Environmental and Resource Economics

, Volume 45, Issue 1, pp 49–72 | Cite as

Carbon Sequestration with Reforestations and Biodiversity-scenic Values

  • Alejandro Caparrós
  • Emilio Cerdá
  • Paola Ovando
  • Pablo Campos


This paper presents an optimal control model to analyze reforestations with two different species, including commercial values, carbon sequestration and biodiversity or scenic values. We discuss the implications of partial or total internalization of environmental values, showing that internalizing only carbon sequestration may have negative impacts on biodiversity-scenic values. To evaluate the practical relevance, we compare reforestations in the South-west of Spain with cork-oaks (a slow-growing native species) and with eucalyptus (a fast-growing alien species). We do the analysis with two different carbon crediting methods: the Carbon Flow Method and the Ton Year Accounting Method. With the first method, the forest surface increases more, but using mainly eucalyptus. With the second, additional reforestations are done mainly using cork-oaks. We value the impact on visitors of these reforestations using stated preferences methods showing that, when these values are internalized, cork-oaks are favored.


Optimal control Forests Carbon sequestration Biodiversity Scenic Stated preferences Carbon accounting 

JEL Classification

Q23 Q26 Q51 Q57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boletin Oficial del Estado (BOE) (2001) Real Decreto 6/2001, de 12 de enero, sobre fomento de la forestación de tierras agrícolas. BOE 12(13.1.2001):1621–1630Google Scholar
  2. Campos P, Daly-Hassen H, Ovando P (2007) Cork-oak forest management in Spain and Tunisia: two case studies of conflicts between sustainability and private income. Int For Rev 9(2): 610–626Google Scholar
  3. Campos P, Ovando P, Oviedo JL, López E, Montero G (2009) Economía privada de la forestación con alcornoques y la regeneración natural del alcornocal en el Parque Natural Los Alcornocales (Cádiz - Málaga). In: Zapata-Blanco S (eds) Alcornocales e industria corchera: Hoy, Ayer y Mañana. Museu del Suro de Palafrugell, Palafrugell, Spain (Forthcoming)Google Scholar
  4. Cunha-e-Sá MA, Rosa R (2006) Impact of carbon accounting methods on optimal forest management: an application to the Portuguese eucalyptus forest. II AERNA Congress, Lisbon (2–3 June)Google Scholar
  5. Caparrós A, Campos A, Martín D (2003) Influence of carbon dioxide abatement and recreational services on optimal forest rotation. Int J Sustain Dev 6(3): 345–358CrossRefGoogle Scholar
  6. Caparrós A, Cerdá E, Ovando P, Campos P (2007) Carbon Sequestration with reforestations and biodiversity-scenic values. FEEM Working Paper 28.2007, MilanGoogle Scholar
  7. Caparrós A, Oviedo JL, Campos P (2008) Would you choose your preferred option? Comparing choice and recoded ranking experiments. Am J Agricult Econ 90(3): 843–855CrossRefGoogle Scholar
  8. Caparrós A, Jacquemont F (2003) Conflicts between biodiversity and carbon offset programs: economic and legal implications. Ecol Econ 46: 143–157CrossRefGoogle Scholar
  9. Carnus J-M, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, O’Hara K, Walters B (2006) Planted forests and biodiversity. J For 104(2): 65–77Google Scholar
  10. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11(9): 362–366CrossRefGoogle Scholar
  11. Dockner E (1985) Local stability in optimal control problems with two state variables. In: Feichtinger G Optimal control theory and economic analysis 2. North-Holland, Amsterdam, pp 89–103Google Scholar
  12. Englin J, Callaway JM (1993) Global climate change and optimal forest management. Nat Resour Model 7(3): 191–202Google Scholar
  13. Feng H, Zhao J, Kling CL (2002) The time path and implementation of carbon sequestration. Am J Agricult Econ 84(1): 134–149CrossRefGoogle Scholar
  14. Feng H, Kling CL (2005) The consequences of cobenefits for the efficient design of carbon sequestration programs. Can J Agricult Econ 53: 461–476CrossRefGoogle Scholar
  15. García O (1983) A stochastic differential equation model for the height growth of forest stands. Biometrics 39: 1059–1072CrossRefGoogle Scholar
  16. Hartman R (1976) The harvesting decision when a standing forest has value. Econ Inq 14: 52–58CrossRefGoogle Scholar
  17. Hunt C (2008) Economics and ecology of emerging markets and credits for bio-sequestered carbon on private land in tropical Australia. Ecol Econ 66(2-3): 309–318CrossRefGoogle Scholar
  18. Huntsinger L, Bartolome JW (1992) Ecological dynamics of Quercus dominated woodlands in California and southern Spain: a state-transition model. Vegetatio 99–100: 299–305CrossRefGoogle Scholar
  19. Intergovernmental Panel on Climate Change (IPCC) (2000) IPCC special report: land use, land use change and forestry. WMO–UNEP, GenevaGoogle Scholar
  20. Krinsky I, Robb AL (1986) On approximating the statistical properties of elasticities. Rev Econ Stat 68: 715–719CrossRefGoogle Scholar
  21. Lubowski RN, Plantinga AJ, Stavins RN (2006) Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function. J Environ Econ Manag 51: 135–152CrossRefGoogle Scholar
  22. Matthews S, O’Connor R, Plantinga AJ (2002) Quantifying the impacts on biodiversity of policies for carbon sequestration in forests. Ecol Econ 40(1): 71–87CrossRefGoogle Scholar
  23. McFadden D (1981) Econometric models of probabilistic choice. In: Manski C, McFadden D (eds) Structural analysis of discrete data with econometric applications. MIT Press, Cambridge, pp 198–272Google Scholar
  24. Montero G, López E, Campos P, Sánchez-González MO, Sánchez M, Ruiz-Peinado R, Ovando P, Caparrós A, Bachiller, A (2009) Selvicultura de los alcornocales (Quercus suber L.) del macizo del Aljibe (Cádiz—Málaga). In: Zapata-Blanco S, (eds) Alcornocales e industria corchera: Hoy, Ayer y Mañana. Museu del Suro de Palafrugell, Palafrugell, Spain (Forthcoming)Google Scholar
  25. Montero G, Ruiz-Peinado R, Muñoz M (2006) Producción de biomasa y fijación de CO2 por los bosques españoles Serie Forestal 13. Monografías Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, MadridGoogle Scholar
  26. Moons E, Proost S, Saveyn B, Hermy M (2008) Optimal location of new forests in a suburban region. J For Econ 14(1): 5–27Google Scholar
  27. Moura-Costa P, Wilson C (2000) An equivalence factor between CO 2 avoided emissions and sequestration—description and applications in forestry. Mitig Adapt Strateg Glob Chang 5(1): 51–60CrossRefGoogle Scholar
  28. Muys B, Garcia-Quijano J, Deckmyn G, Ceulemans R, Moons E, Proost S (2003) An integrated decision support framework for the prediction and evaluation of efficiency environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. KU Leuven Working Paper 2003–2006.Google Scholar
  29. Official Journal of the European Communities (OJEC) (1999) Council regulation (EC) no. 1257/1999 of 17 May 1999, on support for rural development from the European Agricultural Guidance and Guarantee Fund (EAGGF) and amending and repealing certain Regulations. OJEC, L, vol. 160, 26.6.1999, pp. 80–102Google Scholar
  30. Olschewski R, Benitez PC (2005) Secondary forests as temporary carbon sinks? The economic impact of accounting methods on reforestation projects in the tropics. Ecol Econ 55: 380–394CrossRefGoogle Scholar
  31. Richards KR, Sampson RN, Brown S (2006) Agricultural and forestlands: US carbon policy strategies. PEW Center, WashingtonGoogle Scholar
  32. Richards KR, Stokes C (2004) A review of forest carbon sequestration cost studies: a dozen years of research. Clim Chang 63: 1–48CrossRefGoogle Scholar
  33. Sohngen B, Mendelsohn R (2003) An optimal control model of forest carbon sequestration. Am J Agricult Econ 85(2): 448–457CrossRefGoogle Scholar
  34. Van Kooten GC, Binkley CS, Delcourt G (1995) Effects of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am J Agricult Econ 77: 365–374CrossRefGoogle Scholar
  35. Van Kooten GC (2000) Economic dynamics of tree planting for carbon uptake on marginal agricultural lands. Can J Agricult Econ 48: 51–65CrossRefGoogle Scholar
  36. Van’t Veld K, Plantinga A (2005) Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies. J Environ Econ Manag 50: 59–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alejandro Caparrós
    • 1
  • Emilio Cerdá
    • 2
  • Paola Ovando
    • 1
  • Pablo Campos
    • 1
  1. 1.Spanish National Research Council (CSIC)Institute for Public Goods and Policies (IPP)MadridSpain
  2. 2.Department of Economic AnalysisUniversity Complutense MadridMadridSpain

Personalised recommendations