Skip to main content

Advertisement

Log in

Joint Management of Wildlife and Livestock Disease

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

We analyze a bioeconomic model of a multiple-host disease problem involving wildlife and livestock. The social planner’s choices include targeted (i.e., infectious versus healthy) livestock harvests, non-targeted wildlife harvests, environmental habitat variables, and on-farm biosecurity to prevent cross-species contacts. The model is applied to bovine tuberculosis among Michigan white-tailed deer and cattle. We find optimal controls may target the livestock sector more stringently when the livestock sector exhibits low value relative to the wildlife sector. This is in contrast with the conventional wisdom on the issue that controls should primarily target wildlife species that serve as disease reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrow KJ (1968). Optimal capital policy with irreversible investment. In: Wolfe, JN (eds) Value, capital and growth: papers in honour of Sir John Hicks, pp. University Press Edinburgh, Edinburgh

    Google Scholar 

  • Barlow N (1991). A spatially aggregated disease/host model for bovine tb in New Zealand possum populations. J Appl Ecol 28: 777–793

    Article  Google Scholar 

  • Bicknell KB, Wilen JE and Howitt RE (1999). Public policy and private incentives for livestock disease control. Aust J Agric Resour Econ 43: 501–521

    Article  Google Scholar 

  • British Columbia Ministry of Agriculture, Food and Fisheries (2002) Fencing factsheet: deer farm perimeter fence

  • Brock W and Xepapadeas A (2002). Optimal ecosystem management when species compete for limiting resources. J Environ Econ Manage 44: 189–220

    Article  Google Scholar 

  • Ho YC and Bryson AE (1975). Applied optimal control: optimization, estimation and control. Hemisphere Publishing, New York

    Google Scholar 

  • Clark CW (1990). Mathematical bioeconomics. Wiley, New York

    Google Scholar 

  • Cleaveland S, Laurenson MK and Taylor LH (2001). Disease of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans Roy Soc Lond Ser B 356: 991–9

    Article  CAS  Google Scholar 

  • Conrad JW and Clark CW (1987). Natural resource economics: notes and problems. Cambridge University Press, New York

    Google Scholar 

  • Daszak P, Cunningham AA and Hyatt AD (2000). Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287: 443–449

    Article  CAS  Google Scholar 

  • Diekmann O, Heesterbeek JAP and Metz JAJ (1990). On the definition and computation of the basic reproduction ratio R0 in models of infectious disease in heterogeneous populations. J Math Biol 28: 365–382

    Article  CAS  Google Scholar 

  • Dobson A (2004). Population dynamics of pathogens with multiple hosts species. Am Nat 164: s64–s78

    Article  Google Scholar 

  • Fenichel EP and Horan RD (2007). Jointly-determined thresholds and economic tradeoffs in wildlife disease management. Nat Resour Model 20: 511–547

    Article  Google Scholar 

  • Finnoff D and Tschirhart J (2003). Harvesting in an eight species ecosystem. J Environ Econ Manage 45: 589–611

    Article  Google Scholar 

  • Foster K and Burt O (1992). A dynamic model of investment in the US beef cattle industry. J Bus Econ Stat 10: 419–426

    Article  Google Scholar 

  • Garner MS (2001) Movement patterns and behavior at winter feeding and fall baiting stations in a population of white-tailed deer infected with bovine tuberculosis in the northeastern lower peninsula of Michigan. Ph.D. Dissertation, Michigan State University, East Lansing

  • Gutierrez AP and Regev U (2005). The bioeconomics of tritrophic systems: applications to invasive species. Ecol Econ 52: 383–396

    Google Scholar 

  • Hanley N, Shogren JF and White B (1997). Environmental economics: in theory and practice. Oxford University Press, New York

    Google Scholar 

  • Hicking GJ (2002) Dynamics of bovine tuberculosis in wild white-tailed deer in Michigan, Michigan Department of Natural Resources Wildlife Division Report No. 3363

  • Horan RD and Wolf CA (2005). The economics of managing infectious wildlife disease. Am J Agric Econ 87: 537–551

    Article  Google Scholar 

  • Hogarth PJ, Hewinson RG and Vordermeier HM (2006). Development of vaccines against bovine tuberculosis. J Pharm Pharmacol 58: 749–757

    Article  CAS  Google Scholar 

  • Lanfranchi P, Ferroglio E, Poglayen G and Guberti V (2003). Wildlife vaccination, conservation and public health. Vet Res Commun 27: 567–574

    Article  Google Scholar 

  • Leefers L, Ferris J, Propst D (1998) Economic consequences associated with bovine tuberculosis in northeastern Michigan. A report to the Michigan Departments of Agriculture, Natural Resources, and Community Health

  • Leighton F (2002). Foreign animal diseases and Canadian wildlife: reasons for concern and the elements of preparedness. Can Vet J 43: 265–267

    Google Scholar 

  • McCallum H, Barlow N and Hone J (2001). How should pathogen transmission be modelled?. Trends Ecol Evol 16: 295–300

    Article  Google Scholar 

  • Mesterton-Gibbons M (1987). On the optimal policy for combined harvesting of independent species. Nat Resour Model 2: 109–134

    Google Scholar 

  • Michigan Department of Agriculture (MDA), Michigan Bovine TB, http://www.bovinetb.com (downloaded August 21, 2002)

  • O’Brien DJ, Schmitt SM, Fierke JS, Hogle SA, Winterstein SR, Cooley TM, Moritz WE, Diegel KL, Fitzgerald SD, Berrry DE and Kaneene JB (2002). Epidemiology of Mycobacterium bovis in free-ranging white-tailed deer in Michigan. Prev Vet Med 54: 47–63

    Article  Google Scholar 

  • Otter Research. An introduction to AD model builder, version 7.0, for use in nonlinear modeling and statistics. Otter Research, Ltd, Nanaimo

  • Regev U, Gutierrez AP, Schreiber SJ and Zilberman D (1998). Biological and economics foundations of renewable resource exploitation. Ecol Econ 26: 227–242

    Article  Google Scholar 

  • Roberts MG and Heesterbeek JAP (2003). A new method for estimating the effort required to control an infectious disease. Proc Roy Soc Lond B 270: 1359–1364

    Article  CAS  Google Scholar 

  • Rondeau D (2001). Along the way back from the brink. J Environ Econ Manage 42: 156–182

    Article  Google Scholar 

  • Rosen S, Murphy KM and Scheinkman JM (1994). Cattle cycles. J Polit Econ 102: 468–492

    Article  Google Scholar 

  • The Economist (2005, Nov. 19). Infection: the usual suspects, pp 96–97

  • The Royal Society (2002) Infectious diseases in livestock: scientific questions relating to the transmission, prevention and control of epidemic outbreaks of infectious disease in livestock in Great Britain. London

  • Schmitt SM, Fitzgerald SD, Cooley TM, Bruning-Fann CS, Sullivan L, Perrry D, Carlson T, Minnis RB, Payeur JB and Sikarskie J (1997). Bovine tuberculosis in free-ranging white-tailed deer in Michigan. J Wildl Dis 33: 749–758

    CAS  Google Scholar 

  • U.S. Department of Agriculture, Animal and Plant Health Inspection Service (USDA-APHIS). Foot-and-mouth disease, http://www.aphis.usda.gov/oa/pubs/fsfmd301.htm January 2002 (downloaded August 30 2002)

  • U.S. Department of Agriculture, Animal and Plant Health Inspection Service (USDA-APHIS) (1996) Appendix C: simulation model of tuberculosis risk to cattle from infection in free-ranging white-tailed deer, assessing the risks associated with M. Bovis in Michigan free-ranging white-tailed deer. Center for Animal Disease Information and Analysis (CADIA) Technical Report No. 01–96

  • U.S. Department of Agriculture, National Agricultural Statistics Service (USDA-NASS) (2002) Census of agriculture

  • Vordermeier HM, Chambers MA, Buddle BM, Pollock JM and Hewinson RG (2006). Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J 171: 229–244

    Article  CAS  Google Scholar 

  • Walters S (2001). Landscape pattern and productivity effects on source-sink dynamics of deer populations. Ecol Modell 143: 17–32

    Article  Google Scholar 

  • Wittenberg E, Black J (2004) Feeder steer business analysis summary. Michigan State University Agricultural Economics Staff Paper 05–15. November 2005

  • Wittenberg E, Wolf C (2004) Michigan dairy farm business analysis summary. Michigan State University Agricultural Economics Staff Paper 05–10. October 2005

  • Wolf CA, Ferris JN (2000) Economic consequences of bovine tuberculosis for Michigan livestock agriculture. A report to the Michigan Department of Agriculture

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Horan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horan, R.D., Wolf, C.A., Fenichel, E.P. et al. Joint Management of Wildlife and Livestock Disease. Environ Resource Econ 41, 47–70 (2008). https://doi.org/10.1007/s10640-007-9180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-007-9180-x

Keywords

Navigation