Environmental and Resource Economics

, Volume 36, Issue 2, pp 191–213 | Cite as

Using Fast and Slow Processes to Manage Resources with Thresholds



Economists have relied on convexity assumptions for a long time but many natural resources that stem from ecosystems have non-convexities in their dynamics. This article illustrates the consequences of relaxing convexity assumptions for management and the role of fast and slow variables. The paper presents a general framework to handle systems with fast and slow variables, and illustrates the method using a model of coral reefs subject to fishing pressure. The insights obtained are used to discuss alternative management strategies.


management multiple steady states non-convexities slow and fast variables 

JEL classification

C61 Q20 Q22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks to Claire Armstrong, Stephen Carpenter, Miriam Huitric, Karl-Göran␣Mäler, David Starrett, Anastasios Xepapadeas, and to two anonymous referees for their useful comments on the paper. Grants from FORMAS are gratefully acknowledged.

Supplementary material

10640_2006_9029_MOESM1_ESM.pdf (209 kb)
Supplementary material


  1. Arrow K. J., Fisher A. C. (1974) Environmental Preservation Uncertainty, and Irreversibility. Quarterly Journal of Economics 88:312–319CrossRefGoogle Scholar
  2. Brock W. A., Starrett D. (2003) Managing Systems with Non-convex Positive Feedback. Environmental and Resource Economics 26(4):575–602CrossRefGoogle Scholar
  3. Carpenter S. R. (2003) Regime Shifts in Lake Ecosystems: Pattern and Variation, Vol 15, Excellence in Ecology Series. Ecology Institute, Oldendorf/Luhe, GermanyGoogle Scholar
  4. Carpenter S. R., Brock W. A. (2004) Spatial Complexity, Resilience, and Policy Diversity: Fishing on Lake-rich Landscapes. Ecology and Society 9(1):1–31Google Scholar
  5. Carpenter S. R., Turner M. G. (2000a) Special Issue on Interactions of Fast and Slow Variables in Ecosystems. Ecosystems 3(6):495–595. Special issueCrossRefGoogle Scholar
  6. Carpenter S. R., Turner M. G. (2001) Hares and Tortoises: Interactions of Fast and Slow Variables in Ecosystems. Ecosystems 3(6):495–497CrossRefGoogle Scholar
  7. Clark, C. W. (1990), Mathematical Bioeconomics – The Optimal Management of Renewable Resources, in: Pure and Applied Mathematics, 2nd edition. Wiley. First published in 1976.Google Scholar
  8. Claussen M., Kubatzki C., Brovkin V., Ganopolski A., Hoelzmann P., Pachur H. (1999) Simulation of an Abrupt Change in Saharan Vegetation at the End of Mid-Holocene. Geophysical Research Letters 26(14):2037–2040CrossRefGoogle Scholar
  9. Crépin, A.-S. (2002), Tackling the Economics of Ecosystems, PhD Thesis, Stockholm University, Department of Economics. Dissertations in Economics 2002, 6.Google Scholar
  10. Crépin A.-S. (2003) Multiple Species Boreal Forests – What Faustmann Missed. Environmental and Resource Economics 26(4):625–646CrossRefGoogle Scholar
  11. Dasgupta, P. and K.-G. Mäler (2003), The Economics of Non-convex Environments. Environmental and Resource Economics 26(4), Special issue.Google Scholar
  12. Epstein, L. S. (1980) Decision-making and the Temporal Resolution of Uncertainty. International Economic Review 21(2):269–284CrossRefGoogle Scholar
  13. Fenichel N. (1979) Geometric Singular Perturbation Theory for Ordinary Differential Equations. Journal of Differential Equations 31:53–98CrossRefGoogle Scholar
  14. Folke, C., S. Carpenter, T. Elmqvist, L. C. Gunderson, B. Walker, J. Bengtsson, F. Berkes, J.␣Colding, K. Danell, M. Falkenmark, L. Gordon, R. Kasperson, N. Kautsky, A. Kinzig, S. Levin, K.-G. Mäler, F. Moberg, L. Ohlsson, P. Olsson, E. Ostrom, W. Reid, J.␣Rockström, H. Savenise and U. Svedin (2002), Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformation, Edita Nordstedts Tryckeri AB, Stockholm. Scientific Background Paper on Resilience for the Process of The World Summit on Sustainable Development on Behalf of The Environmental Advisory Council to the Swedish Government.Google Scholar
  15. Freixas, X. and J.-J. Laffont (1984), ‘On the Irreversibility Effect’, in M. Boyer and R.␣Kihlstrom, eds., Bayesian Models in Economic Theory. Elsevier, Dordrecht.Google Scholar
  16. Gollier C. (2001) Should we beware of the precautionary principle?. Economic Policy 0(33):301–321CrossRefGoogle Scholar
  17. Groffman P. M., Baron J. S., Blett T., Gold A. J., Goodman I., Gunderson L. H., Levinson B. M., Palmer M. A., Paerl H. W., Peterson G. D., Poff N. L., Rejeski D. W., Reynolds J. F., Turner M. G., Weathers K. C., Wiens J. (2006) Ecological Thresholds: The Key to Succesful Environmental Management or an Important Concept with No Practical Application? Ecosystems 9(1):1–13CrossRefGoogle Scholar
  18. Henry C. (1974) Investment Decisions Under Uncertainty: The “Irreversibility Effeet”. American Economic Review 64(5):1006–1012Google Scholar
  19. Holling C. (1959) The Components of Predation as Revealed by a Study of Small Mammal Predation of the European Pine Sawfly. Canadian Entomologist 91:293–320CrossRefGoogle Scholar
  20. Holling, C.S. (ed) (1978), Adaptive Environmental Assessment and Management. New York: John Wiley and SonsGoogle Scholar
  21. Immordino G. (2003) Looking for a Guide to Protect the Environment: The Development of the Precautionary Principle. Journal of Economic Surveys 17(5):629–643CrossRefGoogle Scholar
  22. Jennings S., Polunin N. (1997) Impacts of Predator Depletion by Fishing on the Biomass and Diversity of Non-target Reef Fish Communities. Coral Reefs 16:71–82CrossRefGoogle Scholar
  23. Knowler D., Barbier E. B. (2005) Managing the Black Sea Anchovy Fishery with Nutrient Enrichment and a Biological Invader. Marine Resource Economics 20(3):263–285Google Scholar
  24. Kokotovic P., Sannuti P. (1968) Singular Perturbation Methods for Reducing Model Order in Optimal Control Design. IEEE Transactions on Automatic Control 13(4):377–384CrossRefGoogle Scholar
  25. Krutilla, J. V., C. J. Cichetti, M. A. I. Freeman and C. S. Russell (1972), ‘Observations on the Economics of Irreplaceable Assets’, in A. V. Kneese and B. T. Bower, eds., Environmental Quality Analysis, Chapter 3, pp. 69–112. The Johns Hopkins Press. Papers from a Resources for the Future conference.Google Scholar
  26. Kuznetsov, Y. A. (1995), ‘Elements of Applied Bifurcation Theory’, in Applied Mathematical Sciences, Vol. 112. Springer-Verlag.Google Scholar
  27. Ludwig D., Carpenter S., Brock W. (2003) Optimal Phosphorus Loading for a Potentially Eutrophic Lake. Ecological Applications 13(4):1135–1152Google Scholar
  28. Ludwig D., Jones D. D., Holling C. S. (1978) Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and the Forest. Journal of Animal Ecology 47:315–332CrossRefGoogle Scholar
  29. Mäler K.-G., Xepapadeas A., de Zeeuw A. (2003) The Economics of Shallow Lakes. Environmental and Resource Economics 26(4):603–624CrossRefGoogle Scholar
  30. Mäler, K.-G. and A. Fisher (2005), `Environment, Uncertainty and Option Values', Ch. 13 in K.G. Mäler and J. R. Vincent, eds., Handbook of Environmental Economics, Vol. 2. North-HollandGoogle Scholar
  31. Margolis, M. B. and E. Naevdal (2004), Safe Minimum Standards in Dynamic Resource Problems—Conditions for Living on the Edge of Risk, RFF Discussion paper 04-03. Available at www.rff.org/rff/Documents/RFF-DP-04-03.pdfGoogle Scholar
  32. McClanahan T. R., Bergman K., Huitric M., McField M., Elfwing T., Nyström M., Nordemar I. (2000) Response of Fishes to Algae Reduction on Glover Reef, Belize. Marine Ecology Progress Series 206:273–282Google Scholar
  33. Milik A., Prskawetz A., Feichtinger G., Sanderson W. C. (1996) Slow-fast Dynamics in Wonderland. Environmental Modeling and Assessment 1(1,2):3–17Google Scholar
  34. Naidu D. (2002) Singular Perturbations and Time Scales in Control Theory and Applications: An Overview. Dynamics of Continuous. Discrete and Impulsive Systems 9:233–278CrossRefGoogle Scholar
  35. Nyström M., Folke C., Moberg F. (2000) Coral Reef Disturbance and Resilience in a Human-dominated Environment. Trends in Ecology and Evolution 15(10):413–417CrossRefGoogle Scholar
  36. Perrings, C. (1991), ‘Reserved Rationality and the Precautionary Principle: Technological Change, Time and Uncertainty in Environemntal Decision Making’, in R. Costanza, ed., Ecological Economics – The Science and Management of Sustainability, Chapter 11, pp. 153–167. Columbia University Press.Google Scholar
  37. Pontryagin, L., V. Boltyanskii, R. Gamkrelidze and E. Mishchenko (1964), The Mathematical Theory of Optimal Processes. Pergamon Press. Translated by D. E. Brown.Google Scholar
  38. Real, L. (1977), `The Kinetics of Functional Response', American Naturalist, 111, 289–300Google Scholar
  39. Rinaldi S., Scheffer M. (2000) Geometric Analysis of Ecological Models with Slow and Fast Processes. Ecosystems 3(6):507–521CrossRefGoogle Scholar
  40. Roberts C. M. (1995) Effects of Fishing on the Ecosystem Structure of Coral Reefs. Conservation Biology 9(5):988–995CrossRefGoogle Scholar
  41. Scheffer M., Szabó S., Gragnani A., Van Nes E. H., Rinaldi S., Kautsky N., Norberg J., Roijackers R. M., Franken R. J. (2003) Floating Plant Dominance as a Stable State. Proceedings of the National Academy of Sciences of the United States of America 100(7):4040–4045CrossRefGoogle Scholar
  42. Segel L. A. (1972) Simplification and Scaling. SIAM Review 14(4):547–571CrossRefGoogle Scholar
  43. Stewart B., Jones G. (2001) Associations Between the Abundance of Piscivorous Fishes and Their Prey on Coral Reefs: Implications for Prey-fish Mortality. Marine Biology 138:383–397CrossRefGoogle Scholar
  44. Tikhonov A. (1952) Systems of Differential Equations Containing Small Parameters at Derivatives. Matematicheskii Sbornik 31:575–86. In RussianGoogle Scholar
  45. Turchin P. (2003) Complex Population Dynamics – A Theoretical/Empirical Analysis, Vol. 35, Monographs in Population Biology. Princeton University Press, Princeton/OxfordGoogle Scholar
  46. Ulph A., Ulph D. (1997) Global Warming, Irreversibility and Learning. Economic Journal 107(442):636–649CrossRefGoogle Scholar
  47. Wagener F. (2003) Skiba Points and Heteroclinic Bifurcation Points, with Applications to the Shallow Lake System. Journal of Economic Dynamics and Control 27(9):1533–1561CrossRefGoogle Scholar
  48. Walters, C. (1986), Adaptive Management of Renewable Resources. New York: MacMillanGoogle Scholar
  49. Weisbrod B. A. (1964) Collective-consumption Services of Individual-consumption Goods. The Quarterly Journal of Economics 78(3):471–477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.The Beijer International Institute of Ecological EconomicsThe Royal Swedish Academy of SciencesStockholmSweden

Personalised recommendations