Advertisement

Environmental and Resource Economics

, Volume 34, Issue 1, pp 173–188 | Cite as

What You Don’t Know Might Hurt You: Some Unresolved Issues in the Design and Analysis of Discrete Choice Experiments

  • Jordan J. Louviere
Article

Abstract

The papers and comments in this issue focus on four broad areas related to understanding and modeling choices: (1) The use of laboratory experiments to improve valuation methods; (2) The design of stated preference choice set and choice occasions; (3) Latent class models as means of identifying and accommodating preference heterogeneity; and (4) Accommodating uncertainty about the “true” model, modeling ranking and rating tasks and pooling data sources. In what follows I offer some comments on each area, and briefly discuss several unresolved issues associated with each area, closing with some comments about future research opportunities.

Keywords

discrete choice experiments choice models unobserved variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Akiva, M., Morikawa, T., Shiroishi, F. 1992‘Analysis of the Reliability of Preference Ranking Data’Journal of Business Research24149164CrossRefGoogle Scholar
  2. Burgess, L., Street, D. 2003‘Optimal Designs for 2k Choice Experiments’Communication in Statistics – Theory and Methods3221852206CrossRefGoogle Scholar
  3. Burgess, L., Street, D. 2005a‘Optimal Designs for 2k Choice Experiments’Communications in Statistics –Theory and Methods3221852206CrossRefGoogle Scholar
  4. Burgess, L., Street, D. 2005‘Optimal Designs for Choice Experiments with Asymmetric Attributes’Journal of Statistical Planning and Inference134288301CrossRefGoogle Scholar
  5. Cardell, N. S. 1997‘Variance Components Structures for the Extreme Value and Logistic Distributions with Applications to Models of Heterogeneity’Econometric Theory13185213CrossRefGoogle Scholar
  6. Dawes, R. M., Corrigan, B. 1974‘Linear Models in Decision Making’Psychological Bulletin8195106CrossRefGoogle Scholar
  7. David F. Layton and S. Todd Lee (2006). “Embracing Model Uncertainty: Strategies for Response Pooling and Model Averaging.” This volumeGoogle Scholar
  8. DeShazo, J. R., Fermo, G. 2002‘Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency’Journal of Environmental Economics and Management44123143CrossRefGoogle Scholar
  9. Devinney, T. M., J. J. Louviere and T. Coltman (2005), ‘Utilizing Rich Multimedia Methods for the Elicitation of Preferences for Radical Future Technologies’, /EMAC/ANZMAC/ /Joint Conference/, Milan, MayGoogle Scholar
  10. Devinney, T. M., J. J. Louviere and T. Coltman (2004a), ‘Utilizing Rich Multimedia Methods for the Elicitation of Preferences for Radical Future Technologies’, /ESOMAR Conference in Marketing: Where Science Meets Practice, Oct, Warsaw, http://www.esomar.org/main.php?a=3&p=1161, pp. 271–288Google Scholar
  11. Devinney, T. M., J. J. Louviere and T. Coltman (2004b), ‘Decision States and Information Acceleration’, ANZMAC Conference, Wellington, DecGoogle Scholar
  12. Finn, A., Louviere, J. J. 1992‘Determining the Appropriate Response to Evidence of Public Concern: The Case of Food Safety’Journal of Public Policy and Marketing111225Google Scholar
  13. Hausman, J. A., Ruud, P. A. 1987‘Specifying and Testing Econometric Models for Rank-Ordered Data’Journal of Econometrics3483104CrossRefGoogle Scholar
  14. Hoeffler, S. 2003‘Measuring Preferences for Really New Products’Journal of Marketing Research40406420CrossRefGoogle Scholar
  15. Hoffman, P. J. 1960‘The Paramorphic Representation of Clinical Judgement’Psychological Bulletin57116131CrossRefGoogle Scholar
  16. Louviere, J. J. 2001a‘What if Consumer Experiments Impact Variances as Well as Means: Response Variability as a Behavioral Phenomenon’Journal of Consumer Research28506511CrossRefGoogle Scholar
  17. Louviere, J. J., Carson, R. T., Ainslie, A., Cameron, T. A., DeShazo, J. R., Hensher, D., Kohn,  R., Marley, T., Street, D. 2002‘Dissecting the Random Component of Utility’Marketing Letters (Special Issue on the UC Berkeley Invitational Choice Symposium)13177193Google Scholar
  18. Louviere, J. J. (2004a), ‘Random Utility Theory-Based Stated Preference Elicitation Methods: Applications In Health Economics With Special Reference To Combining Sources of Preference Data’, CenSoC Working Paper No. 04-001, http://www.business.uts.edu.au/censoc/papers/index.html
  19. Louviere, J. J. (2004b), ‘Complex Statistical Choice Models: Are the Assumptions True, and If Not, What Are the Consequences?’, CenSoC Working Paper No. 04-002, http://www.business.uts.edu.au/censoc/papers/index.html
  20. Louviere, J. J., L. Burgess, D. Street and A. A. J. Marley (2004), ‘Modeling the Choice of Single Individuals by Combining Efficient Choice Exeriment Designs with Extra Preference Information’, CenSoC Working Paper No. 04-005, http://www.business.uts.edu.au/censoc/papers/index.html
  21. Louviere, J. J., Meyer, R. J., Bunch, D. S., Carson, R., Dellaert, B., Hanemann, W. M., Hensher, D., Irwin, J. 1999‘Combining Sources of Preference Data for Modelling Complex Decision Processes’Marketing Letters10187204CrossRefGoogle Scholar
  22. Louviere, J., Woodworth, G. 1983‘Design and Analysis of Simulated Consumer Choice or Allocation Experiments: an Approach based on Aggregate Data’Journal of Marketing Research20350367CrossRefGoogle Scholar
  23. Marley, A. A. J. and J. J. Louviere (2005), ‘Some Probabilistic Models of Best, Worst, and Best-Worst Choices’, Journal of Mathematical Psychology, forthcomingGoogle Scholar
  24. McFadden, , Daniel, , Train, Kenneth 2000‘Mixed MNL Models for Discrete Response’ Journal of Applied Econometrics15447470CrossRefGoogle Scholar
  25. Street, D., Bunch, D., Moore, B. 2001‘Optimal Designs for 2k Paired Comparison Experiments’Communications in Statistics – Theory and Methods3021492171CrossRefGoogle Scholar
  26. Street, D., Burgess, L. 2004‘Optimal and Near-Optimal Pairs for the Estimation of Effects in 2-Level Choice Experiments’Journal of Statistical Planning and Inference118185199CrossRefGoogle Scholar
  27. Street D., L. Burgess and J. J. Louviere (2005), ‘Quick and Easy Choice Sets: Constructing Optimal and Nearly Optimal Stated Choice Experiments’, International Journal of Research in Marketing, forthcomingGoogle Scholar
  28. Swait, J., Adamowicz, W. 2001a‘Choice Complexity and Decision Strategy Selection’Journal of Consumer Research28135148CrossRefGoogle Scholar
  29. Swait, J., Adamowicz, W. 2001b‘Choice Environment, Market Complexity and Consumer Behavior: A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of Consumer Choice’Organizational Behaviour and Human Decision Processes86141167CrossRefGoogle Scholar
  30. Train, Kenneth, Weeks, Melvyn 2005Discrete Choice Models in Preference Space and Willingness-to-Pay-SpaceAlberini, A.Scarpa, R. eds. Applications of Simulation Methods in Environmental Resource EconomicsSpringerDordrecht, The Netherlands117Chapter 1CrossRefGoogle Scholar
  31. Urban, G. L., Hauser, J. R., Qualls, W. J., Weinberg, B. D., Bohlman, J. D., Chicos, R. A. 1997‘Information Acceleration: Validation and Lessons from the Field’Journal of Marketing Research34143153CrossRefGoogle Scholar
  32. Urban, G. L., Hauser, J. R., Roberts, J. R., John, H. 1990‘Prelaunch Forecasting of New Automobiles’Management Science36401421CrossRefGoogle Scholar
  33. Urban, G. L., Weinberg, B. D., Hauser, J. R. 1996‘Premarket Forecasting of Really New Products’Journal of Marketing604760CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Centre for the Study of Choice (CenSoC), Faculty of BusinessUniversity of TechnologySydneyAustralia

Personalised recommendations