Skip to main content

Advertisement

Log in

The effect of direct instruction and web quest on learning outcome in computer science education

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

Answers to the questions of which instructional methods are suitable for school and should be applied in teaching individual subjects and also how instructional methods support the act of learning represent challenges to general education and education in individual subjects. This study focuses on the empirical examination of learning outcome with respect to two instructional methods: direct instruction and web quest. An SPF-2 × 2•2 design is used to control instructional method, time and class context. Learning outcome on QR code is assessed with reference to multiple-choice test items. The empirical findings show that learning with direct instruction performs better than web quest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abell, S. K., & Lederman, N. G. (2007). Handbook of research on science education. New York: Lawrence Erlbaum.

    Google Scholar 

  • ACM. Association for Computing Machinery. (2013). Computer science curriculum 2013. New York: ACM.

    Google Scholar 

  • Adams, G. L., & Engelmann, S. (1996). Research on direct instruction: 20 years beyond DISTAR. Seattle: Educational Achievement Systems.

    Google Scholar 

  • Alias, N., Siraj, S., Nazri, M., Rahman, A., Ujang, A., Gelamdin, R. B., & Said, A. M. (2013). Research and trends in the studies of WebQuest from 2005 to 2012: A content analysis of publications in selected journals. Procedia - Social and Behavioral Sciences, 103, 763–772.

    Article  Google Scholar 

  • Author. (2011). Marrying content and process in computer science education. IEEE Transactions on Education, 54(3), 387–397.

    Article  Google Scholar 

  • Author. (2015a). Booklet I: Instructional methods to computer science education. Berlin: epubli.

    Google Scholar 

  • Author. (2015b). Instructional methods to computer science education as investigated by computer science teachers. Journal of Computer Science, 11(8), 915–927.

    Article  Google Scholar 

  • Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. London: Sage.

    Google Scholar 

  • Case, S. M., & Swanson, D. B. (1998). Construction written test questions for the basic and clinical sciences. Philadelphia: National Board of Medical Examines.

    Google Scholar 

  • Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35(3), 124–129.

    MATH  Google Scholar 

  • Davis, G. B. (2009). Tools for teaching. San Francisco: Jossey-Bass.

    Google Scholar 

  • Dodge, B. (2018). WebQuest.Org: Welcome. What is a WebQuest. Retrieved January 2, 2018 from http://webquest.org/.

  • Fisher, T. A., & Tarver, S. G. (1997). Meta-analysis of studies of mathematics curricula designed around big ideas. Effective School Practices, 16, 71–79.

    Google Scholar 

  • Foundata (2018). QR code generator. Retrieved January 2, 2018, from http://goqr.me/de.

  • GI (2018). Bildungsstandards Informatik SI und SII. Retrieved January 2, 2018 from http://www.informatikstandards.de/.

  • Ginnis, P. (2001). The teacher's toolkit. Classroom achievement. Carmarthen: Crown House Publishing.

    Google Scholar 

  • Goldstein, H. (2010). Multilevel statistical models. New York: Wiley.

    Book  Google Scholar 

  • Gugel, G. (2011). 2000 Methoden für Schule und Lehrebildung. Beltz: Weinheim.

    Google Scholar 

  • Haladyna, T. M. (2004). Developing and validating multiple-choice test items. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hattie, J. (2009). Visible learning. New York: Routledge.

    Google Scholar 

  • Huber, S. G., & Hader-Popp, S. (2007). Unterrichtsentwicklung durch Methodenvielfalt im Unterricht fördern: das Methodenatelier als schulinterne Fortbildung. In A. Bartz,. J. Fabian, S.G. Huber, Kloft, C. H. Rosenbusch, & H. Sassenscheidt (Eds.), PraxisWissen Schulleitung (30.31). München: Wolters Kluwer.

  • Kirk, R. E. (2012). Experimental design: Procedures for the behavioral sciences (4th ed.). Los Angeles: Sage.

    MATH  Google Scholar 

  • Kiryakova, G., & Angelova, N. (2017). QR codes in the business world. Saarbrücken: Lambert.

    Google Scholar 

  • Mueller, K. E., & Barton, C. N. (1989). Approximate power for repeated-measures ANOVA lacking sphericity. Journal of the American Statistical Association, 84(406), 549–555.

    Article  MathSciNet  Google Scholar 

  • Mueller, K. E., LaVange, L. E., Ramey, S. L., & Ramey, C. T. (1992). Power calculations for general linear multivariate models including repeated measures applications. Journal of the American Statistical Association, 87(420), 1209–1226.

    Article  Google Scholar 

  • NCSS (2018). PASS 15. Retrieved January 2, 2018 from http://www.ncss.com.

  • Olson, T. M., & Wisher, R. A. (2002). The effectiveness of web-based instruction: An initial inquiry. The International Review of Research in Open and Distributed Learning, 3(2).

  • Petty, G. (2009). Teaching today: A practical guide. Cheltenham: Nelson Thornes.

    Google Scholar 

  • Sawilowsky, S. S., Blair, R. C., & Higgins, J. J. (1989). An investigation of the type I error and power properties of the rank transform procedure in factorial ANOVA. Journal of Educational Statistics, 14(3), 255–267.

    Article  Google Scholar 

  • The Center for Teaching and Learning (2018). 150 teaching methods. Retrieved January 2, 2018 from https://teaching.uncc.edu/sites/teaching.uncc.edu/files/media/files/file/InstructionalMethods/150TeachingMethods.pdf.

  • Weber, S. (2013). QR Codes. Retrieved January 2, 2018 from http://www.swisseduc.ch/informatik/theoretische_informatik/qr_codes/.

  • Wiechmann, J., & Wildhirt, S. (Eds.). (2015). Zwölf Unterrichtsmethoden. Basel: Weinheim.

    Google Scholar 

  • Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design. Boston: McGraw-Hill.

    Google Scholar 

  • Winter, M. (2011). Scan me – Everybody’s guide to the magical world of Qr codes. New York: Westsong Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zendler.

Appendices

Appendix 1: Data

Table 2 shows the obtained data set for the SPF-2 × 2 • 2 design with n11 = 12 students and n12 = 12 of class 9a, n21 = 14 and n22 = 13 students of class 9b. From the students, data sets are available before and after the lesson. The table contains raw scores (means and the standard errors of the means) as well as the ranks of the data (in brackets).

Table 2 Data for the SPF-2 × 2•2 design

Appendix 2

Fig. 9
figure 9figure 9

Multiple-choice test with 14 items

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendler, A., Klein, K. The effect of direct instruction and web quest on learning outcome in computer science education. Educ Inf Technol 23, 2765–2782 (2018). https://doi.org/10.1007/s10639-018-9740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-018-9740-4

Keywords

Navigation