Education and Information Technologies

, Volume 21, Issue 1, pp 123–148 | Cite as

Usage patterns discovery from a web log in an Indian e-learning site: A case study



An important research area in education and technology is how the learners use e-learning. By exploring the various factors and relationships between them, we can get an insight into the learners’ behaviors for delivering tailored e-content required by them. Although many tools exist to record detailed navigational activities, they don’t explore the learners’ usage patterns for an adaptive e-learning site. The previous web log data analyses, done so far, have been very limited in their scope as they lack detailed empirical results on the learning technology usage. This paper discusses the detailed results of a case study of web data mining in a specific e-learning application. The main objective of this study is to conduct research on usability and effectiveness of the e-content by analyzing the web log. For this, a suitable data set was retrieved from raw web log records, to which various web mining & statistical techniques could be applied. We have evaluated different features of e-content that can lead to better learning outcomes for the learners, by understanding their navigational behaviors, their interaction with system and their area of interest. We found, for example, what sequence of topics were the most liked and the least liked by the learners; we also found that these patterns, lead us to hypothesize, the correlation and regression analysis between the average time, test score and total attempts.


E-learning Web mining Personalization 


  1. Anozie, N. O., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06), July 17.Google Scholar
  2. Arroyo, I., Beal, C. R., Murray, T., Walles, R., & Woolf, B. P. (2004). Web-based intelligent multimedia tutoring for high stakes achievement. Proceedings of the Intelligent Tutoring Systems, 7th International Conference (pp.468–477), ITS 2004, SpringerGoogle Scholar
  3. Baron, S, & Spiliopoulou, M. (2004). Monitoring the evolution of web usage. [Online]. Available:–3–540–30123–3_11.pdf.
  4. Beck, J. E., Woolf, B. P., & Beal, C. R. (2000). ADVISOR: A machine learning architecture for intelligent tutor construction. Seventeenth National Conference on Artificial intelligence, 552–557.Google Scholar
  5. Comunale, C. L., & Sexton, T. R. (2001–2002). The effectiveness of course Web sites in higher education: an exploratory study. Journal of Educational Technology Systems, 30(2), 171–190.Google Scholar
  6. Cotton, D. R. E., & Grestya, K. A. (2007). The rhetoric and reality of e learning: using the think-aloud method to evaluate an online resource. Assessment & Evaluation in Higher Education, 32, 583–600.CrossRefGoogle Scholar
  7. Davies, J., & Graff, M. (2005). Performance in e-learning: online participation and student grades. British Journal of Educational Technology, 36(4), 657–663.CrossRefGoogle Scholar
  8. Esichaikul, V, Lamnoi, S., & Bechter, C. (2011). Student modelling in adaptive e-learning systems, knowledge management & e-learning. An International Journal (KM&EL), 3.Google Scholar
  9. Ezeife, C. I., Lu, Y., & Liu, Y. (2005) PLWAP sequential mining: open source code.Google Scholar
  10. Feng, M., & Heffernan, N.T. (2005). Informing teachers live about student learning: Reporting in the ASSISTment System. The 12th Annual Conference on Artificial Intelligence in Education Workshop on Usage Analysis in Learning Systems.Google Scholar
  11. Gao, T., & Lehman, J. D. (2003). The effects of different levels of interaction on the achievement and motivational perceptions of college students in a web-based learning environment. Journal of Interactive Learning Research, 14(4), 367–386.Google Scholar
  12. Hardy, J., Antonioletti, M., & Bates, S. P. (2004). E-learner tracking: tools for discovering learner behaviour. The IASTED International Conference on Web-base Education.Google Scholar
  13. Hellwege, J., Gleadow, A., & McNaught, C. (1996). Paperless lectures on the web: An evaluation of the educational outcomes of teaching Geology using the Web. Proceedings of 13th Annual Conference of the Australian Society for Computers in Learning in Tertiary education.Google Scholar
  14. Intratat, C. (2011). Alternatives for making language learning games more appealing for self-access learning. Studies in Self-Access Learning Journal, 2(3), 136–152.Google Scholar
  15. MacQueen, J. B. (1967) Some methods for classification and analysis of multivariate observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, 281–297.Google Scholar
  16. Mahajan, R., Sodhi, J. S., & Mahajan, V. (2012). Mining user access patterns efficiently for adaptive e-learning environment. International Journal of e-Education, e-Business, e-Management and e-Learning, 2, 277–279.Google Scholar
  17. McIsaac, M. S., & Blocher, J. M. (1999). Student and teacher perceptions of interaction in online computer-mediated communication. Educational Media International, v.36 n.2, 121–131.CrossRefGoogle Scholar
  18. Mobasher, B., Cooley, R., & Srivastava, J. (1997). Web mining: information and pattern discovery on the world wide web. Tools with Artificial Intelligence, pp. 558–567.Google Scholar
  19. Mostow, J., & Beck, J. (2006). Some useful tactics to modify, map, and mine data from intelligent tutors. Natural Language Engineering (Special Issue on Educational Applications), 12(2), 195–208.CrossRefGoogle Scholar
  20. Pei, J., Han, J., Mortazavi-asl, B., & Zhu, H. (2000). Mining access patterns efficiently from web logs. In Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 396–407). Kyoto: Springer.Google Scholar
  21. Peled, A., & Rashty, D. (1999). Logging for success: advancing the use of WWW logs to improve computer mediated distance learning. Journal of Educational Computing Research, 21(3).Google Scholar
  22. Pritchard, D., & Warnakulasooriya, R. (2005). Data from a web-based homework tutor can predict student’s final exam score. In World Conference on Educational Multimedia, Hypermedia and Telecommunications, Vol, no. 1 (pp. 2523–2529).Google Scholar
  23. Romero, C., Ventura, S., & García, E. (2008a). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51, 368–384.CrossRefGoogle Scholar
  24. Romero, C., Ventura, S., & García, E. (2008b). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51, 368–384.CrossRefGoogle Scholar
  25. Sheard, J., Albrecht, D., & Butbul, E. (2005). ViSION: Visualization student interactions online. Proceedings of the Eleventh Australasian World Wide Web Conference, pp. 48–58.Google Scholar
  26. Sia, K., Cho, J., Hino, K., Chi, Y., & Tseng, S. (2007). Monitoring RSS feeds based on user browsing pattern. International Conference on Weblogs and Social Media, pp. 161–168.Google Scholar
  27. Vaarandi, R. (2003). A data clustering algorithm for mining patterns from. IEEE IPOM’03 Proceedings, pp. 119–126.Google Scholar
  28. Valsamidis, S., & Democritus, S. K. (2011). E-learning platform usage analysis. Interdisciplinary Journal of E-Learning and Learning Objects, 7, 185–204.Google Scholar
  29. Vanijja, V., & Supattathum, M. (2006). Statistical analysis of eLearning usage in a university. Third International Conference on eLearning for Knowledge-Based Society.Google Scholar
  30. Yadav, D., & Choubey, A. (2012). E-learning: current state of art and future prospects. IJCSI International Journal of Computer Science Issues, 9, 490–499.Google Scholar
  31. Zhu, J. J. H., Stokes, M., & Lu, A. X. Y. (2000). The use and effects of web-based instruction: evidence from a single-source study. Journal of Interactive Learning Research, 11(2), 197–218.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Amity Institute of Information TechnologiesNoidaIndia
  2. 2.AKC DataSystemsDelhiIndia
  3. 3.HCL TechnologiesNoidaIndia

Personalised recommendations