Skip to main content

Advertisement

Log in

Stathmin 1 is highly expressed and associated with survival outcome in malignant adrenocortical tumours

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Adrenocortical carcinoma (ACC) is an aggressive endocrine cancer with few molecular predictors of malignancy and survival, especially in paediatric patients. Stathmin 1 (STMN1) regulates microtubule dynamics and has been involved in the malignant phenotype of cancer cells. Recently, it was reported that STMN1 is highly expressed in ACC patients, and STMN1 silencing reduces the clonogenicity and migration of ACC cell lines. However, the prognostic significance of STMN1 and its therapeutic potential remain undefined in ACC. In the present study, STMN1 mRNA levels were significantly higher (p < 0.05) in ACC patients, especially in an advanced stage, and correlated with BUB1B and PINK1 expression, the prognostic-related genes in ACC. In paediatric tumours, high STMN1 expression was observed in both adrenocortical carcinoma and adrenocortical adenoma patients. Among the adult malignant tumours, STMN1 level was an independent predictor of survival outcomes (overall survival: hazard ratio = 6.08, p = 0.002; disease-free survival: hazard ratio = 4.65, p < 0.0001). Paclitaxel, a microtubule-stabilizing drug, reduces the activation of STMN1 and significantly decreases cell migration and invasion in ACC cell lines and ACC cells from secondary cell culture (all p < 0.0001). In summary, STMN1 expression may be of great value to clinical and pathological findings in therapeutic trials and deserves future studies in ACC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACA:

Adrenocortical adenomas

ACC:

Adrenocortical carcinoma

BUB1B:

Budding uninhibited by benzimidazoles 1 homologue beta

FBS:

Foetal bovine serum

MTT:

Methylthiazoletetrazolium

PINK:

PTEN induced kinase 1

qPCR:

Quantitative PCR

STMN1:

Stathmin 1

TCGA:

The Cancer Genome Atlas.

References

  1. Else T, Kim AC, Sabolch A, Raymond VM, Kandathil A, Caoili EM, Jolly S, Miller BS, Giordano TJ, Hammer GD (2014) Adrenocortical carcinoma. Endocr Rev 35:282–326

    Article  CAS  Google Scholar 

  2. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, Kim S, Assie G, Morozova O, Akbani R, Shih J, Hoadley KA, Choueiri TK, Waldmann J, Mete O, Robertson AG, Wu HT, Raphael BJ, Shao L, Meyerson M, Demeure MJ, Beuschlein F, Gill AJ, Sidhu SB, Almeida MQ, Fragoso MCBV, Cope LM, Kebebew E, Habra MA, Whitsett TG, Bussey KJ, Rainey WE, Asa SL, Bertherat J, Fassnacht M, Wheeler DA, Hammer GD, Giordano TJ, Verhaak RGW, Zheng S, Verhaak RGW, Giordano TJ, Hammer GD, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, Kim S, Assié G, Morozova O, Akbani R, Shih J, Hoadley KA, Choueiri TK, Waldmann J, Mete O, Robertson AG, Wu HT, Raphael BJ, Meyerson M, Demeure MJ, Beuschlein F, Gill AJ, Sidhu SB, Almeida M, Barisson Fragoso MC, Cope LM, Kebebew E, Habra MA, Whitsett TG, Bussey KJ, Rainey WE, Asa SL, Bertherat J, Fassnacht M, Wheeler DA, Benz C, Ally A, Balasundaram M, Bowlby R, Brooks D, Butterfield YSN, Carlsen R, Dhalla N, Guin R, Holt RA, Jones SJM, Kasaian K, Lee D, Li HI, Lim L, Ma Y, Marra MA, Mayo M, Moore RA, Mungall AJ, Mungall K, Sadeghi S, Schein JE, Sipahimalani P, Tam A, Thiessen N, Park PJ, Kroiss M, Gao J, Sander C, Schultz N, Jones CD, Kucherlapati R, Mieczkowski PA, Parker JS, Perou CM, Tan D, Veluvolu U, Wilkerson MD, Hayes DN, Ladanyi M, Quinkler M, Auman JT, Latronico AC, Mendonca BB, Sibony M, Sanborn Z, Bellair M, Buhay C, Covington K, Dahdouli M, Dinh H, Doddapaneni H, Downs B, Drummond J, Gibbs R, Hale W, Han Y, Hawes A, Hu J, Kakkar N, Kalra D, Khan Z, Kovar C, Lee S, Lewis L, Morgan M, Morton D, Muzny D, Santibanez J, Xi L, Dousset B, Groussin L, Libé R, Chin L, Reynolds S, Shmulevich I, Chudamani S, Liu J, Lolla L, Wu Y, Yeh JJ, Balu S, Bodenheimer T, Hoyle AP, Jefferys SR, Meng S, Mose LE, Shi Y, Simons JV, Soloway MG, Wu J, Zhang W, Mills Shaw KR, Demchok JA, Felau I, Sheth M, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Zhang J(J), Davidsen T, Crawford C, Hutter CM, Sofia HJ, Roach J, Bshara W, Gaudioso C, Morrison C, Soon P, Alonso S, Baboud J, Pihl T, Raman R, Sun Q, Wan Y, Naresh R, Arachchi H, Beroukhim R, Carter SL, Cho J, Frazer S, Gabriel SB, Getz G, Heiman DI, Kim J, Lawrence MS, Lin P, Noble MS, Saksena G, Schumacher SE, Sougnez C, Voet D, Zhang H, Bowen J, Coppens S, Gastier-Foster JM, Gerken M, Helsel C, Leraas KM, Lichtenberg TM, Ramirez NC, Wise L, Zmuda E, Baylin S, Herman JG, LoBello J, Watanabe A, Haussler D, Radenbaugh A, Rao A, Zhu J, Bartsch DK, Sbiera S, Allolio B, Deutschbein T, Ronchi C, Raymond VM, Vinco M, Shao L, Amble L, Bootwalla MS, Lai PH, van den Berg DJ, Weisenberger DJ, Robinson B, Ju Z, Kim H, Ling S, Liu W, Lu Y, Mills GB, Sircar K, Wang Q, Yoshihara K, Laird PW, Fan Y, Wang W, Shinbrot E, Reincke M, Weinstein JN, Meier S, Defreitas T (2016) Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 30:363

    Article  CAS  Google Scholar 

  3. Assie G, Letouze E, Fassnacht M, Jouinot A, Luscap W, Barreau O, Omeiri H, Rodriguez S, Perlemoine K, Rene-Corail F et al (2014) Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 46:607–612

    Article  CAS  Google Scholar 

  4. Pereira SS, Monteiro MP, Antonini SRR, Pignatelli D (2019) Apoptosis regulation in adrenocortical carcinoma. In: Apoptosis regulation in adrenocortical carcinoma. Endocr Connect

    Chapter  Google Scholar 

  5. Pereira SS, Monteiro MP, Bourdeau I, Lacroix A, Pignatelli D (2018) Mechanisms of endocrinology: Cell cycle regulation in adrenocortical carcinoma. Eur J Endocrinol 179:R95–R110

    Article  Google Scholar 

  6. Terzolo M, Ardito A, Zaggia B, Laino F, Germano A, De Francia S, Daffara F, Berruti A (2012) Management of adjuvant mitotane therapy following resection of adrenal cancer. Endocrine 42:521–525

    Article  CAS  Google Scholar 

  7. West AN, Neale GA, Pounds S, Figueredo BC, Rodriguez Galindo C, Pianovski MA, Oliveira Filho AG, Malkin D, Lalli E, Ribeiro R et al (2007) Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67:600–608

    Article  CAS  Google Scholar 

  8. Wieneke JA, Thompson LD, Heffess CS (2003) Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. Am J Surg Pathol 27:867–881

    Article  Google Scholar 

  9. Belletti B, Baldassarre G (2011) Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 15:1249–1266

    Article  CAS  Google Scholar 

  10. Machado-Neto JA, Saad ST, Traina F (2014) Stathmin 1 in normal and malignant hematopoiesis. BMB Rep 47:660–665

    Article  Google Scholar 

  11. Biaoxue R, Xiguang C, Hua L, Shuanying Y (2016) Stathmin-dependent molecular targeting therapy for malignant tumor: the latest 5 years' discoveries and developments. J Transl Med 14:279

    Article  Google Scholar 

  12. Rana S, Maples PB, Senzer N, Nemunaitis J (2008) Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 8:1461–1470

    Article  CAS  Google Scholar 

  13. Biaoxue R, Hua L, Wenlong G, Shuanying Y (2016) Overexpression of stathmin promotes metastasis and growth of malignant solid tumors: a systemic review and meta-analysis. Oncotarget 7:78994–79007

    PubMed  PubMed Central  Google Scholar 

  14. Aronova A, Min IM, Crowley MJP, Panjwani SJ, Finnerty BM, Scognamiglio T, Liu YF, Whitsett TG, Garg S, Demeure MJ, Elemento O, Zarnegar R, Fahey III TJ (2018) STMN1 is overexpressed in adrenocortical carcinoma and promotes a more aggressive phenotype in vitro. Ann Surg Oncol 25:792–800

    Article  Google Scholar 

  15. Lau SK, Weiss LM (2009) The Weiss system for evaluating adrenocortical neoplasms: 25 years later. Hum Pathol 40:757–768

    Article  Google Scholar 

  16. Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 50:5488–5496

    CAS  PubMed  Google Scholar 

  17. Leibovitz A, McCombs WM 3rd, Johnston D, McCoy CE, Stinson JC (1973) New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst 51:691–697

    CAS  PubMed  Google Scholar 

  18. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    Article  CAS  Google Scholar 

  19. Almeida MQ, Fragoso MC, Lotfi CF, Santos MG, Nishi MY, Costa MH, Lerario AM, Maciel CC, Mattos GE, Jorge AA et al (2008) Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 93:3524–3531

    Article  CAS  Google Scholar 

  20. Franca MM, Ferraz-de-Souza B, Santos MG, Lerario AM, Fragoso MC, Latronico AC, Kuick RD, Hammer GD, Lotfi CF (2013) POD-1 binding to the E-box sequence inhibits SF-1 and StAR expression in human adrenocortical tumor cells. Mol Cell Endocrinol 371:140–147

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  22. de Reynies A, Assie G, Rickman DS, Tissier F, Groussin L, Rene-Corail F, Dousset B, Bertagna X, Clauser E, Bertherat J (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27:1108–1115

    Article  Google Scholar 

  23. Fragoso MC, Almeida MQ, Mazzuco TL, Mariani BM, Brito LP, Goncalves TC, Alencar GA, Lima Lde O, Faria AM, Bourdeau I et al (2012) Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 166:61–67

    Article  CAS  Google Scholar 

  24. Rowlands DC, Williams A, Jones NA, Guest SS, Reynolds GM, Barber PC, Brown G (1995) Stathmin expression is a feature of proliferating cells of most, if not all, cell lineages. Lab Investig 72:100–113

    CAS  PubMed  Google Scholar 

  25. Ma HL, Jin SF, Ju WT, Fu Y, Tu YY, Wang LZ, Jiang L, Zhang ZY, Zhong LP (2017) Stathmin is overexpressed and regulated by mutant p53 in oral squamous cell carcinoma. J Exp Clin Cancer Res 36:109

    Article  Google Scholar 

  26. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P, Breuhahn K (2007) Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology 46:759–768

    Article  CAS  Google Scholar 

  27. Pinto EM, Billerbeck AE, Fragoso MC, Mendonca BB, Latronico AC (2005) Deletion mapping of chromosome 17 in benign and malignant adrenocortical tumors associated with the Arg337His mutation of the p53 tumor suppressor protein. J Clin Endocrinol Metab 90:2976–2981

    Article  CAS  Google Scholar 

  28. Passaia BDS, Dias MH, Kremer JL, Antonini SRR, de Almeida MQ, Fragoso M, Lotfi CFP (2018) TCF21/POD-1, a Transcritional regulator of SF-1/NR5A1, as a potential prognosis marker in adult and pediatric adrenocortical tumors. Front Endocrinol (Lausanne) 9:38

    Article  Google Scholar 

  29. Liu F, Sun YL, Xu Y, Wang LS, Zhao XH (2013) Expression and phosphorylation of stathmin correlate with cell migration in esophageal squamous cell carcinoma. Oncol Rep 29:419–424

    Article  CAS  Google Scholar 

  30. Machado-Neto JA, de Melo CP, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand-Metze I, Costa FF, Saad ST, Traina F (2015) Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget 6:29573–29584

    Article  Google Scholar 

  31. Machado-Neto JA, Rodrigues Alves APN, Fernandes JC, Coelho-Silva JL, Scopim-Ribeiro R, Fenerich BA, da Silva FB, Scheucher PS, Simoes BP, Rego EM et al (2017) Paclitaxel induces Stathmin 1 phosphorylation, microtubule stability and apoptosis in acute lymphoblastic leukemia cells. Heliyon 3:e00405

    Article  Google Scholar 

  32. Demeure MJ, Stephan E, Sinari S, Mount D, Gately S, Gonzales P, Hostetter G, Komorowski R, Kiefer J, Grant CS, Han H, von Hoff DD, Bussey KJ (2012) Preclinical investigation of nanoparticle albumin-bound paclitaxel as a potential treatment for adrenocortical cancer. Ann Surg 255:140–146

    Article  Google Scholar 

  33. Cerquetti L, Sampaoli C, De Salvo M, Bucci B, Argese N, Chimento A, Vottari S, Marchese R, Pezzi V, Toscano V et al (2015) C-MYC modulation induces responsiveness to paclitaxel in adrenocortical cancer cell lines. Int J Oncol 46:2231–2240

    Article  CAS  Google Scholar 

  34. Berruti A, Sperone P, Ferrero A, Germano A, Ardito A, Priola AM, De Francia S, Volante M, Daffara F, Generali D et al (2012) Phase II study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. Eur J Endocrinol 166:451–458

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Cintia Fridman, Department of Legal Medicine and Medical Ethics, School of Medicine, University of São Paulo, for STR DNA profiling analysis in cell cultures. The authors would like to acknowledge all the research participants contributing to The Cancer Genome Atlas (TCGA) resource for providing high-quality data for analyses.

Funding

BSP and JLK are recipients of a scholarship from FAPESP (n° 2016/12381–7 / n° 2016/17285–6), the São Paulo State Research Foundation (FAPESP); BBC is the recipient of a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); JAM-N received funding from FAPESP (n° 2017/24993–0) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); CFPL received funding from FAPESP (n° 2015/014199–9; 2018/19035–2) and from CNPq. This study was financed in part by CAPES- Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

BSP, KL, JLK, and BBC performed the experiments, data analysis and interpretation, and manuscript editing. BMPM processed patient samples and performed manuscript editing. JCLS performed multivariate statistical analysis, data interpretation, and manuscript editing. MCBVF provided the patient samples and clinical follow-up and performed manuscript editing. MCZ selected the patients and performed manuscript editing; JAMN and CFPL idealized the study, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Claudimara Ferini Pacicco Lotfi.

Ethics declarations

Ethical approval

Informed consent was obtained from all individual participants included in the study prior to sample collection, and the study was approved by the Institutional Review Board.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

HighSTMN1expression negatively impacts disease-free survival in adrenocortical patients from the TCGA cohort. Kaplan–Meier analysis of disease-free survival according to STMN1 mRNA levels in the TCGA ACC cohort. Patients were dichotomized according to median gene expression for survival analysis. The p-values are indicated by the log-rank test. (PDF 91 kb)

Supplementary Figure 2

Representative images of STMN1 expression in carcinoma and adenoma secondary cell cultures and cell lines. Immunoperoxidase analysis of STMN1 expression in secondary cell culture from adrenocortical carcinoma ACC-T12 and adenoma ACA-T23 cells and the NCI-H295R cell line. Magnification 100x (upper) and 400x (above). (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Passaia, B., Lima, K., Kremer, J.L. et al. Stathmin 1 is highly expressed and associated with survival outcome in malignant adrenocortical tumours. Invest New Drugs 38, 899–908 (2020). https://doi.org/10.1007/s10637-019-00846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00846-9

Keywords

Navigation