Skip to main content

Advertisement

Log in

A novel humanized anti-PD-1 monoclonal antibody potentiates therapy in oral squamous cell carcinoma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Currently, immune checkpoint inhibitors have been shown to extend the survival of many cancer patients. However, few studies have focused on immune checkpoint inhibition for the treatment of patients with oral squamous cell carcinoma (OSCC). Here, by screening at an early stage, we obtained a strain of anti-PD-1 monoclonal antibody (mAb) that targets programmed cell death-1 (PD-1) does not contain the CH1 and CL fragment. In this study, the role of our novel mAb was tested in the treatment of OSCC in vitro and in vivo. We found that our novel mAb can significantly augment T cell mediated cytokine secretion, target cellular lytic and apoptotic abilities, and inhibit tumor growth and inflammation in vivo. The PD-L1 blockade was accompanied by the inhibition of AKT and ERK1/2, thus suggesting that the PD-L1/PD-1 signaling pathway may play an important immunopreventive role in the tumorigenic properties of OSCC cells by modulating the AKT and ERK1/2 pathways. Additionally, PD-L1 staining was observed both in human OSCC tissues and normal oral mucous tissue adjacent to the tumor, which occurred at different rates. Taken together, these results indicated that our novel anti-PD-1 mAb may be used as a clinical therapy in human OSCC development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oliveira-Neto HH, Gleber-Netto FO, de Sousa SF, Franca CM, Aquiar MC, Silva TA et al (2012) A comparative study of microvessel density in squamous cell carcinoma of the oral cavity and lip. Oral Surg Oral Med Oral Pathol Oral Radiol 113:391–398

    Article  PubMed  Google Scholar 

  2. Liang X, Zhou H, Liu X, He Y, Tang Y, Zhu G et al (2010) Effect of local hyperthermia on lymphangiogenic factors VEGF-C and -D in a nude mouse xenograft model of tongue squamous cell carcinoma. Oral Oncol 4:111–115

    Article  CAS  Google Scholar 

  3. Kademani D (2007) Oral cancer. Mayo Clin Proc 82:878–887

    Article  PubMed  Google Scholar 

  4. Weber MM, Fottner C (2018) Immune checkpoint inhibitors in the treatment of patients with neuroendocrine neoplasia. Oncol Res Treat 41:306–312

    Article  PubMed  Google Scholar 

  5. Smyth E, Thuss-Patience PC (2018) Immune checkpoint inhibition in gastro-oesophageal cancer. Oncol Res Treat 41:272–280

    Article  CAS  PubMed  Google Scholar 

  6. Chen YM (2017) Immune checkpoint inhibitors for non-small cell lung cancer treatment. J Chin Med Assoc 80:7–14

    Article  PubMed  Google Scholar 

  7. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJR, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354

    Article  CAS  PubMed  Google Scholar 

  8. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest 121:2350–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  10. Honda Y, Otsuka A, Ono S, Yamamoto Y, Seidel JA, Morita S et al (2016) Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 6(1):e1253657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong H, Zhu G, Tamada K, Files DB, van Deursen JM, Chen L (2004) B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20:327–336

    Article  CAS  PubMed  Google Scholar 

  12. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  CAS  PubMed  Google Scholar 

  13. Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483

    Article  CAS  PubMed  Google Scholar 

  14. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  15. Flies DB, Sandler BJ, Sznol M, Chen L (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84:409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  17. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  18. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  19. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A, Ohmori K, Uchiyama T (2009) B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci 100:2093–2100

    Article  CAS  PubMed  Google Scholar 

  21. Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674

    Article  CAS  PubMed  Google Scholar 

  22. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:1–22

    Article  CAS  Google Scholar 

  23. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, Kasperbauer JL, Ballman KV, Chen L (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63:6501–6505

    CAS  PubMed  Google Scholar 

  24. Tsushima F, Tanaka K, Otsuki N, Youngnak P, Iwai H, Omura K, Azuma M (2006) Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol 42:268–274

    Article  CAS  PubMed  Google Scholar 

  25. Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144

    Article  CAS  PubMed  Google Scholar 

  26. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096

    CAS  PubMed  Google Scholar 

  27. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sullivan RJ, Flaherty KT (2015) Pembrolizumab for treatment of patients with advanced or unresectable melanoma. Clin Cancer Res 21:2892–2897

    Article  CAS  PubMed  Google Scholar 

  30. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra wH, Akpeng B et al (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zandberg DP, Strome SE (2017) The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol 50:627–632

    Article  CAS  Google Scholar 

  33. Ibrahim R, Stewart R, Shalabi A (2015) PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol 42:474–483

    Article  CAS  PubMed  Google Scholar 

  34. Sun Z, Liu Q, Ye D, Ye K, Yang Z, Dong L (2018) Role of c-met in the progression of human oral squamous cell carcinoma and its potential as a therapeutic target. Oncol Rep 39:209–216

    PubMed  Google Scholar 

  35. Wu Y, Yu M, Sun Z, Hou W, Wang Y, Yuan Q, Mo W (2018) Generation and characterization of a bispecific antibody targeting both PD-1 and c-Met. Protein Pept Lett 24:1105–1112

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W, Zeng H, Zhang N, du W, Chen C, Huang JA (2017) PD-L1 induced by IFN-γ from tumor-associated macrophage via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol 22:1026–1033

    Article  CAS  PubMed  Google Scholar 

  37. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  39. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ribas. A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366:2517–2519

    Article  CAS  PubMed  Google Scholar 

  41. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lichtenegger FS, Rothe M, Schnorfeil FM, Deiser K, Krupka C, Augsberger C, Schlüter M, Neitz J, Subklewe M (2018) Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Front Immunol 9:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Postow MA, Chesneyb J, Pavlick AC, Robert C, Grossmann K, McDermott D et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V et al (2016) Vectorization in an oncolytic vaccinia virus of an antibody, a fab and scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 5:1–14

    Article  CAS  Google Scholar 

  46. Sun Z, Wu Y, Hou W, Wang Y, Yuan Q, Wang H et al (2017) A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer. Oncotarget 8:29067–29079

    PubMed  PubMed Central  Google Scholar 

  47. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mann JE, Hoesli R, Michmerhuizen NL, Devenport SN, Ludwig ML, Vandenberg TR, Matovina C, Jawad N, Mierzwa M, Shuman AG, Spector ME, Brenner JC (2017) Surveilling the potential for precision medicine-driven PD-1/PD-L1-targeted therapy in HNSCC. J Cancer 8:332–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  CAS  PubMed  Google Scholar 

  50. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    Article  CAS  PubMed  Google Scholar 

  51. Mazanet MM, Hughes CC (2002) B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 169:3581–3588

    Article  CAS  PubMed  Google Scholar 

  52. Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY (2008) PD-L1:PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci 49:2518–2525

    Article  PubMed  Google Scholar 

  53. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    Article  CAS  PubMed  Google Scholar 

  54. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229:114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Xie T, Wang B, William WN Jr, Heymach JV, EI-Naqqar AK et al (2017) PD-1 blockade prevents the development and progression of carcinogen-induced oral premalignant lesions. Cancer Prev Res 10:684–693

    Article  CAS  Google Scholar 

  56. Gao Y, Yang J, Cai Y, Fu S, Zhang N, Fu X, Li L (2018) IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer 143:931–943

    Article  CAS  PubMed  Google Scholar 

  57. Mimura K, Teh JL, Okayama H, Shiraishi K, Kua LF, Koh V, Smoot DT, Ashktorab H, Oike T, Suzuki Y, Fazreen Z, Asuncion BR, Shabbir A, Yong WP, So J, Soong R, Kono K (2018) PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 109:43–53

    Article  CAS  PubMed  Google Scholar 

  58. Lastwike KJ, Wilson IIIW, Li QK, Norris J, Xu H, Ghazarian SR et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cance. Cancer Res 76:227–238

    Article  CAS  Google Scholar 

  59. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–251

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81001205, 81472179, 81873975), the Three-year Planning for Strengthening the Construction of Public Health System in Shanghai (2015–2017) (15GWZK0301), the Fundamental Research Funds for the Central Universities (22120170071), the Excellent Academic Leader Training Program of Shanghai Health System (2018BR31), and the Clinical Research and Cultivation Project of Shanghai Tongji Hospital [ITJ (ZD) 1803].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Li or Z. Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animal were followed. All procedures performed in studies involving human participants received ethics approval from the independent Ethics Committee of the Shanghai Ninth People’s Hospital Affliated to Shanghai Jiaotong University School of Medicine (No. 200926). All experimental procedures were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, F., Liu, Q. et al. A novel humanized anti-PD-1 monoclonal antibody potentiates therapy in oral squamous cell carcinoma. Invest New Drugs 37, 799–809 (2019). https://doi.org/10.1007/s10637-018-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0678-6

Keywords

Navigation