Skip to main content

Advertisement

Log in

Induction of endoplasmic reticulum stress by aminosteroid derivative RM-581 leads to tumor regression in PANC-1 xenograft model

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The high fatality and morbidity of pancreatic cancer have remained almost unchanged over the last decades and new clinical therapeutic tools are urgently needed. We determined the cytotoxic activity of aminosteroid derivatives RM-133 (androstane) and RM-581 (estrane) in three human pancreatic cancer cell lines (BxPC3, Hs766T and PANC-1). In PANC-1, a similar level of antiproliferative activity was observed for RM-581 and RM-133 (IC50 = 3.9 and 4.3 μM, respectively), but RM-581 provided a higher selectivity index (SI = 12.8) for cancer cells over normal pancreatic cells than RM-133 (SI = 2.8). We also confirmed that RM-581 induces the same ER stress-apoptosis markers (BIP, CHOP and HERP) than RM-133 in PANC-1 cells, pointing out to a similar mechanism of action. Finally, these relevant in vitro results have been successfully translated in vivo by testing RM-581 using different doses (10–60 mg/kg/day) and modes of administration in PANC-1 xenograft models, which have led to tumor regression without any sign of toxicity in mice (animal weight, behavior and histology). Interestingly, RM-581 fully reduced the pancreatic tumor growth when administered orally in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AM:

Aminosteroid derivative

AUC:

Area under the curve

CCAC:

Canadian Council on Animal Care

CI:

Combination index

Cmax :

Maximal concentration

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediamine tetraacetic acid

ER:

Endoplasmic reticulum

HE:

Hematoxylin and eosin

IC50 :

Concentration inhibiting 50% of cell growth

ip :

Intraperitoneally

LC/MS/MS:

Liquid chromatography/mass spectrometry/mass spectrometry

MT:

Masson’s trichrome

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophen-yl)-2H-tetrazolium

PAS:

Periodic acid Schiff

PAS-D:

Periodic acid Schiff with diastase

PBS:

Phosphate buffer solution

PG:

Propylene glycol

PK:

Pharmacokinetic

po :

Orally

sc :

Subcutaneously

SI:

Selectivity index

References

  1. Cancer Facts & Figures 2017 - American Cancer Society. (2017)

  2. Midha S, Chawla S, Garg PK (2016) Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Cancer Lett 381:269–277. https://doi.org/10.1016/j.canlet.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  3. Ergin K, Gökmen E (2015) Endoplasmic reticulum stress and pancreatic cancer. Meandros Med Dent J 16:20–24. https://doi.org/10.5152/adutfd.2015.1871

    Article  Google Scholar 

  4. Riha R, Gupta-Saraf P, Bhanja P, Badkul S, Saha S (2017) Stressed out - therapeutic implications of ER stress related cancer research. Oncomedicine 2:156–167. https://doi.org/10.7150/oncm.22477

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  6. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu Y, Zhao C, Zheng H, Lu K, Shi D, Liu Z, Dai X, Zhang Y, Zhang X, Hu W, Liang G (2017) A novel STAT3 inhibitor HO-3867 induces cell apoptosis by reactive oxygen species-dependent endoplasmic reticulum stress in human pancreatic cancer cells. Anti-Cancer Drugs 28:392–400. https://doi.org/10.1097/cad.0000000000000470

    Article  CAS  PubMed  Google Scholar 

  8. Cheng S, Swanson K, Eliaz I, McClintick JN, Sandusky GE, Sliva D (2015) Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress. PLoS One 10:e0122270. https://doi.org/10.1371/journal.pone.0122270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65:11658–11666. https://doi.org/10.1158/0008-5472.can-05-2370

    Article  CAS  PubMed  Google Scholar 

  10. Ranjan A, German N, Mikelis C, Srivenugopal K, Srivastava SK (2017) Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol 39(6). https://doi.org/10.1177/1010428317705517

  11. Lin S, Zhang J, Chen H, Chen K, Lai F, Luo J, Wang Z, Bu H, Zhang R, Li H, Tong H (2013) Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells. Evid Based Complement Alternat Med 2013:629750. https://doi.org/10.1155/2013/629750

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mujumdar N, Banerjee S, Chen Z, Sangwan V, Chugh R, Dudeja V, Yamamoto M, Vickers SM, Saluja AK (2014) Triptolide activates unfolded protein response leading to chronic ER stress in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 306:G1011–G1020. https://doi.org/10.1152/ajpgi.00466.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G, Iovanna JL (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755. https://doi.org/10.1158/0008-5472.can-06-0169

    Article  CAS  PubMed  Google Scholar 

  14. Gajate C, Matos-da-Silva M, Dakirel H, Fonteriz RI, Alvarez J, Mollinedo F (2012) Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum. Oncogene 31:2627–2639. https://doi.org/10.1038/onc.2011.446

    Article  CAS  PubMed  Google Scholar 

  15. Lei P, Abdelrahim M, Cho SD, Liu X, Safe S (2008) Structure-dependent activation of endoplasmic reticulum stress-mediated apoptosis in pancreatic cancer by 1,1-bis(3′-indoly)-1-(p-substituted phenyl)methanes. Mol Cancer Ther 7:3363–3372. https://doi.org/10.1158/1535-7163.mct-08-0439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdelrahim M, Newman K, Vanderlaag K, Samudio I, Safe S (2006) 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 27:717–728. https://doi.org/10.1093/carcin/bgi270

    Article  CAS  PubMed  Google Scholar 

  17. Chien W, Ding LW, Sun QY, Torres-Fernandez LA, Tan SZ, Xiao J, Lim SL, Garg M, Lee KL, Kitajima S, Takao S, Leong WZ, Sun H, Tokatly I, Poellinger L, Gery S, Koeffler PH (2014) Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells. Oncotarget 5:4881–4894. https://doi.org/10.18632/oncotarget.2051

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ayan D, Maltais R, Hospital A, Poirier D (2014) Chemical synthesis, cytotoxicity, selectivity and bioavailability of 5alpha-androstane-3alpha,17beta-diol derivatives. Bioorg Med Chem 22:5847–5859. https://doi.org/10.1016/j.bmc.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  19. Roy J, Maltais R, Jegham H, Poirier D (2011) Libraries of 2beta-(N-substituted piperazino)-5alpha-androstane-3alpha, 17beta-diols: chemical synthesis and cytotoxic effects on human leukemia HL-60 cells and on normal lymphocytes. Mol Divers 15:317–339. https://doi.org/10.1007/s11030-010-9273-2

    Article  CAS  PubMed  Google Scholar 

  20. Jegham H, Roy J, Maltais R, Desnoyers S, Poirier D (2012) A novel aminosteroid of the 5alpha-androstane-3alpha,17beta-diol family induces cell cycle arrest and apoptosis in human promyelocytic leukemia HL-60 cells. Investig New Drugs 30:176–185. https://doi.org/10.1007/s10637-010-9548-6

    Article  CAS  Google Scholar 

  21. Perreault M, Maltais R, Kenmogne LC, Létourneau D, Gobeil S, LeHoux JG, Poirier D (2018) Implication of STARD5 and cholesterol homeostasis disturbance in the endoplasmic reticulum stress-related response induced by pro-apoptotic aminosteroid RM-133. Pharmacol Res 128:52–60

    Article  CAS  PubMed  Google Scholar 

  22. Kenmogne LC, Ayan D, Roy J, Maltais R, Poirier D (2015) The aminosteroid derivative RM-133 shows in vitro and in vivo antitumor activity in human ovarian and pancreatic cancers. PLoS One 10(12):e0144890. https://doi.org/10.1371/journal.pone.0144890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perreault M, Maltais R, Dutour R, Poirier D (2016) Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133. Steroids 115:105–113. https://doi.org/10.1016/j.steroids.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  24. Perreault M, Maltais R, Roy J, Dutour R, Poirier D (2017) Design of a mestranol 2-N-piperazino-substituted derivative showing potent and selective in vitro and in vivo activities in MCF-7 breast cancer models. ChemMedChem 12:177–182. https://doi.org/10.1002/cmdc.201600482

    Article  CAS  PubMed  Google Scholar 

  25. Dutour R, Maltais R, Perreault M, Roy J, Poirier D (2018) Parallel solid-phase synthesis using a new diethylsilylacetylenic linker and leading to mestranol derivatives with potent antiproliferative activities on multiple cancer cell lines. Anti Cancer Agents Med Chem (in press)

  26. Haglund C, Aleskog A, Nygren P, Gullbo J, Hoglund M, Wickstrom M, Larsson R, Lindhagen E (2012) In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemother Pharmacol 69:697–707. https://doi.org/10.1007/s00280-011-1746-1

    Article  CAS  PubMed  Google Scholar 

  27. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nambiar D, Prajapati V, Agarwal R, Singh RP (2013) In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells. Cancer Lett 334:109–117. https://doi.org/10.1016/j.canlet.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  30. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, Mantovani A, Allavena P (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64:8420–8427. https://doi.org/10.1158/0008-5472.can-04-1343

    Article  CAS  PubMed  Google Scholar 

  31. Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 37:8471–8486. https://doi.org/10.1007/s13277-016-5035-9

    Article  CAS  PubMed  Google Scholar 

  32. Sopha P, Ren HY, Grove DE, Cyr DM (2017) Endoplasmic reticulum stress-induced degradation of DNAJB12 stimulates BOK accumulation and primes cancer cells for apoptosis. J Biol Chem 292:11792–11803. https://doi.org/10.1074/jbc.M117.785113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagelkerke A, Bussink J, Sweep FC, Span PN The unfolded protein response as a target for cancer therapy. Biochim Biophys Acta 1846:277–284. https://doi.org/10.1016/j.bbcan.2014.07.006

  34. Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14:581–597. https://doi.org/10.1038/nrc3800

    Article  CAS  PubMed  Google Scholar 

  35. Luo G, Shen Y, Yang L, Lu A, Xiang Z (2017) A review of drug-induced liver injury databases. Arch Toxicol 91:3039–3049. https://doi.org/10.1007/s00204-017-2024-8

    Article  CAS  PubMed  Google Scholar 

  36. Awdishu L, Mehta RL (2017) The 6R's of drug induced nephrotoxicity. BMC Nephrol 18(1):124. https://doi.org/10.1186/s12882-017-0536-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain AK, Jain S (2016) Advances in oral delivery of anti-cancer prodrugs. Expert Opin Drug Deliv 13:1759–1775. https://doi.org/10.1080/17425247.2016.1200554

    Article  CAS  PubMed  Google Scholar 

  38. Lamb YN, Scott LJ (2017) Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs 77:785–792. https://doi.org/10.1007/s40265-017-0741-1

    Article  CAS  PubMed  Google Scholar 

  39. Sahin IH, Lowery MA, Stadler ZK, Salo-Mullen E, Iacobuzio-Donahue CA, Kelsen DP, O'Reilly EM (2016) Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches. Expert Rev Gastroenterol Hepatol 10:893–905. https://doi.org/10.1586/17474124.2016.1153424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vogel A, Ciardiello F, Hubner RA, Blanc JF, Carrato A, Yang Y, Patel DA, Ektare V, de Jong FA, Gill S (2016) Post-gemcitabine therapy for patients with advanced pancreatic cancer - a comparative review of randomized trials evaluating oxaliplatin- and/or irinotecan-containing regimens. Cancer Treat Rev 50:142–147. https://doi.org/10.1016/j.ctrv.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  41. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85. https://doi.org/10.1016/S0140-6736(16)00141-0

    Article  CAS  PubMed  Google Scholar 

  42. Fryer RA, Barlett B, Galustian C, Dalgleish AG (2011) Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD lenalidomide. Anticancer Res 31:3747–3756

    CAS  PubMed  Google Scholar 

  43. Wennier ST, Liu J, Li S, Rahman MM, Mona M, McFadden G (2012) Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer. Mol Ther 20:759–768. https://doi.org/10.1038/mt.2011.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang C, Ball J, Panzica-Kelly J, Augustine-Rauch K (2016) In vitro developmental toxicology screens: a report on the progress of the methodology and future applications. Chem Res Toxicol 29:534–544. https://doi.org/10.1021/acs.chemrestox.5b00458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sonia Francoeur (animal facilities) and Patrick Caron (LC-MS/MS analyses) for their technical assistance. We would also like to thank Micheline Harvey for careful reading of the manuscript, and The National Institutes of Health (Bethesda, MD, USA) for providing the antineoplastic drugs.

Funding

This work was supported by the Canadian Institutes of Health Research (CIHR) from the Targeting High Fatality Cancers – Innovation Grant program and the Proof of Principle-Phase I program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Poirier.

Ethics declarations

Conflict of interest

MP, RM, JR and DP have ownership interests on patent applications and patents related to these families of aminosteroid derivatives. SP, IP and NB declare no conflict of interest.

Electronic supplementary material

Additional information related to: 1) Plasmatic concentration of RM-581; 2) Quantification of RM-581 in plasma; 3) PANC-1 xenograft protocol; 4) Supplementary Table 1: qPCR primers details; 5) Supplementary Table 2: RM-581 is cytotoxic for pancreatic cancer cells and 6) Supplementary Fig. 1: Animal and pancreas weights of mice treated with RM-581.

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perreault, M., Maltais, R., Roy, J. et al. Induction of endoplasmic reticulum stress by aminosteroid derivative RM-581 leads to tumor regression in PANC-1 xenograft model. Invest New Drugs 37, 431–440 (2019). https://doi.org/10.1007/s10637-018-0643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0643-4

Keywords

Navigation