Skip to main content

Advertisement

Log in

A natural compound derivative P-13 inhibits STAT3 signaling by covalently inhibiting Janus kinase 2

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

We investigated the function and molecular mechanisms of 2-desoxy-4β-propylcarbamate-pulchellin (P-13), a sesquiterpene lactone derivative of 2-desoxy-4-epi-pulchellin from the traditional Chinese medicinal herb Carpesium abrotanoides L, in regulating STAT3 signaling and cancer cell growth. We found that P-13 inhibited the IL-6-induced, as well as the constitutive, STAT3 activation in a dose and time-dependent manner. In vitro kinase activity analyses demonstrated that P-13 directly inhibited JAK2 kinase activity. The inhibitory effects of P-13 on JAK2/STAT3 signaling could be blocked by reducing agents dithiothreitol (DTT) or glutathione (GSH), indicating an involvement of the thiol-reactive α-β unsaturated carbonyl group in P-13. Further analyses with mass spectrograph, as well as molecular docking, revealed that P-13 covalently bound with the C452 in the SH2 domain of JAK2. Furthermore, P-13 inhibited growth and induced death of many cancer cell lines, particularly those expressing constitutively activated STAT3. It also inhibited in vivo growth of human cancer cell xenografts. Taken together, these findings revealed P-13 as a novel covalent inhibitor of JAK2, uncovered a new mechanism to inhibit JAK2, and provided a promising anti-cancer drug candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Villarino AV, Kanno Y, O’Shea JJ (2017) Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 18(4):374–384. https://doi.org/10.1038/ni.3691

    Article  CAS  PubMed  Google Scholar 

  2. Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ (2015) Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 194(1):21–27. https://doi.org/10.4049/jimmunol.1401867

    Article  CAS  PubMed  Google Scholar 

  3. Lachance C, Leclerc P (2011) Mediators of the JAK/STAT signaling pathway in human spermatozoa. Biol Reprod 85(6):1222–1231. https://doi.org/10.1095/biolreprod.111.092379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK (2013) JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 52(2):155–166. https://doi.org/10.1002/mc.21841

    Article  CAS  PubMed  Google Scholar 

  5. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296(5573):1653–1655. https://doi.org/10.1126/science.1071545

    Article  CAS  PubMed  Google Scholar 

  6. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(8):1281–1283. https://doi.org/10.1242/jcs.00963

    Article  CAS  PubMed  Google Scholar 

  7. Derenzini E, Lemoine M, Buglio D, Katayama H, Ji Y, Davis RE, Sen S, Younes A (2011) The JAK inhibitor AZD1480 regulates proliferation and immunity in Hodgkin lymphoma. Blood Cancer J 1(12):e46. https://doi.org/10.1038/bcj.2011.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quan YD, Xu HT, Han YS, Mesplede T, Wainberg MA (2017) JAK-STAT signaling pathways and inhibitors affect reversion of envelope-mutated HIV-1. J Virol 91(9). https://doi.org/10.1128/JVI.00075-17

  9. Jia ZH, Jia Y, Guo FJ, Chen J, Zhang XW, Cui MH (2017) Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer. PLoS One 12(8):e0183622. https://doi.org/10.1371/journal.pone.0183622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong MT, Wang J, Jiang NY, Pan HM, Li D (2017) Correlation between p-STAT3 overexpression and prognosis in lung cancer: a systematic review and meta-analysis. PLoS One 12(8):e0182282. https://doi.org/10.1371/journal.pone.0182282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valiulyte I, Steponaitis G, Skiriute D, Tamasauskas A, Vaitkiene P (2017) Signal transducer and activator of transcription 3 (STAT3) promoter methylation and expression in pituitary adenoma. BMC Med Genet 18:72. https://doi.org/10.1186/s12881-017-0434-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zulkifli AA, Tan FH, Putoczki TL, Stylli SS, Luwor RB (2017) STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol Cell Endocrinol 451(C):15–23. https://doi.org/10.1016/j.mce.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  13. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao YX, Pestell RG, Albanese C, Darnell JE (1999) Stat3 as an oncogene. Cell 98(3):295–303. https://doi.org/10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  14. Klisch TJ, Vainshtein A, Patel AJ, Zoghbi HY (2017) Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. Elife 6:e31181. https://doi.org/10.7554/eLife.31181

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang SY, Liang K, Hu QS, Li P, Song J, Yang YD, Yao J, Mangala LS, Li CL, Yang WH, Park PK, Hawke DH, Zhou JW, Zhou Y, Xia WY, Hung MC, Marks JR, Gallick GE, Lopez-Berestein G, Flores ER, Sood AK, Huang SY, Yu DH, Yang LQ, Lin CR (2017) JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Invest 127(12):4498–4515. https://doi.org/10.1172/JCI91553

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bose P, Verstovsek S (2017) JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood 130(2):115–125. https://doi.org/10.1182/blood-2017-04-742288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao H, Ma Y, Hong Z, Zhao L, Monaghan SA, Hu MC, Huang LJ (2017) Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Leukemia 31(10):2122–2131. https://doi.org/10.1038/leu.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenthal A, Mesa RA (2014) Janus kinase inhibitors for the treatment of myeloproliferative neoplasms. Expert Opin Pharmacother 15(9):1265–1276. https://doi.org/10.1517/14656566.2014.913024

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546. https://doi.org/10.1007/s40265-017-0701-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boluda JCH, Gomez M, Perez A (2016) JAK2 inhibitors. Med Clin 147(2):70–75. https://doi.org/10.1016/j.medcli.2016.02.014

    Article  Google Scholar 

  21. Liu Z, Wang H, Guan LN, Chen SY, Lai MD (2018) A novel small molecular STAT3 inhibitor, 5Br-6b, induces apoptosis and inhibits migration in colorectal cancer cells. Anti-Cancer Drugs 29(5):402–410. https://doi.org/10.1097/Cad.0000000000000605

    Article  CAS  PubMed  Google Scholar 

  22. Lee EK, Jeong DW, Lim SJ, Gu GJ, Ahn SI, Kim JS, Paek JH, Kim S, Hong JS, Lim SS, Youn HS (2014) Carpesium abrotanoides extract inhibits inducible nitric oxide synthase expression induced by toll-like receptor agonists. Food Sci Biotechnol 23(5):1637–1641. https://doi.org/10.1007/s10068-014-0223-0

    Article  Google Scholar 

  23. Wang JF, He WJ, Zhang XX, Zhao BQ, Liu YH, Zhou XJ (2015) Dicarabrol, a new dimeric sesquiterpene from Carpesium abrotanoides L. Bioorg Med Chem Lett 25(19):4082–4084. https://doi.org/10.1016/j.bmcl.2015.08.034

    Article  CAS  PubMed  Google Scholar 

  24. Kunigal S, Lakka SS, Sodadasu PK, Estes N, Rao JS (2009) Stat3-siRNA induces Fas-mediated apoptosis in vitro and in vivo in breast cancer. Int J Oncol 34(5):1209–1220. https://doi.org/10.3892/ijo_00000249

    Article  CAS  PubMed  Google Scholar 

  25. Lieblein JC, Ball S, Hutzen B, Sasser AK, Lin HJ, Huang THM, Hall BM, Lin JY (2008) STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer 8:302. https://doi.org/10.1186/1471-2407-8-302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei X, Yin H (2015) Covalent modification of DNA by alpha, beta-unsaturated aldehydes derived from lipid peroxidation: recent progress and challenges. Free Radic Res 49(7):905–917. https://doi.org/10.3109/10715762.2015.1040009

    Article  CAS  PubMed  Google Scholar 

  28. Bateman LA, Zaro BW, Miller SM, Pratt MR (2013) An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. J Am Chem Soc 135(39):14568–14573. https://doi.org/10.1021/ja408322b

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee K, Resat H (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138(11):2570–2578. https://doi.org/10.1002/ijc.29923

    Article  CAS  PubMed  Google Scholar 

  30. Geiger JL, Grandis JR, Bauman JE (2016) The STAT3 pathway as a therapeutic target in head and neck cancer: barriers and innovations. Oral Oncol 56:84–92. https://doi.org/10.1016/j.oraloncology.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  31. Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, Lee E, Ye SK, Cho CH (2017) STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene 36(39):5445–5459. https://doi.org/10.1038/onc.2017.148

    Article  CAS  PubMed  Google Scholar 

  32. Ouedraogo ZG, Biau J, Kemeny JL, Morel L, Verrelle P, Chautard E (2017) Role of STAT3 in genesis and progression of human malignant gliomas. Mol Neurobiol 54(8):5780–5797. https://doi.org/10.1007/s12035-016-0103-0

    Article  CAS  PubMed  Google Scholar 

  33. Clark JD, Flanagan ME, Telliez JB (2014) Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem 57(12):5023–5038. https://doi.org/10.1021/jm401490p

    Article  CAS  PubMed  Google Scholar 

  34. Ghoreschi K, Laurence A, O'Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287. https://doi.org/10.1111/j.1600-065X.2008.00754.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garuti L, Roberti M, Bottegoni G (2010) Non-ATP competitive protein kinase inhibitors. Curr Med Chem 17(25):2804–2821. https://doi.org/10.2174/092986710791859333

    Article  CAS  PubMed  Google Scholar 

  36. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65(10):1566–1584. https://doi.org/10.1007/s00018-008-7440-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12(1):85–98. https://doi.org/10.1006/smim.2000.0210

    Article  CAS  PubMed  Google Scholar 

  38. Yamaoka K, Saharinen P, Pesu M, Holt VET, Silvennoinen O, O'Shea JJ (2004) The Janus kinases (Jaks). Genome Biol 5(12):253. https://doi.org/10.1186/Gb-2004-5-12-253

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Xinyuan Fu (National University of Singapore) for providing the HepG2/STAT3 cell line. We also thank Mingwei Sun (Shanghai Institute of Materia Medica) for the help of LC-MS analysis and Yuqi Yu (Shanghai Institute of Materia Medica) for the help of the molecular docking.

Funding

This work was supported by the National Natural Science Foundation of China (grant 81673465 to Q. Yu) and the China Ministry of Science and Technology Key New Drug Creation and Manufacturing Program (No. 2014ZX9102001002 to JY. Yuan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Hu or Qiang Yu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

ESM 1

(DOCX 1.03 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Niu, J., Wang, F. et al. A natural compound derivative P-13 inhibits STAT3 signaling by covalently inhibiting Janus kinase 2. Invest New Drugs 37, 452–460 (2019). https://doi.org/10.1007/s10637-018-0637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0637-2

Keywords

Navigation