Skip to main content

Advertisement

Log in

Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Microtubule as an important target in the cancer therapy was used to design novel tubulin polymerization inhibitors. Sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and their antiproliferative activity against three selected cancer cell lines (BGC-823, MGC-803 and SGC-7901) were evaluated. All sulfanilamide-1,2,3-triazole hybrids displayed potent inhibitory activity against all cell lines. In particular, compound 10b showed the most excellent inhibitory effect against MGC-803 cells, with an IC50 value of 0.4 μM. Cellular mechanism studies elucidated that 10b induced apoptosis by decreasing the expression level of Bcl-2 and Parp and increasing the expression level of BAX. 10b inhibited the epithelial-mesenchymal transition process by up-regulating E-cadherin and down-regulating N-cadherin. Furthermore, the tubulin polymerization inhibitory activity in vitro of 10b was 2.4 μM. In vivo anticancer assay, 10b effectively inhibited MGC-803 xenograft tumor growth without causing significant loss of body weight. These sulfanilamide-1,2,3-triazole hybrids as potent tubulin polymerization inhibitors might be used as promising candidates for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou P, Liu Y, Zhou L, Zhu K, Feng K, Zhang H, Liang Y, Jiang H, Luo C, Liu M, Wang Y (2016) Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. J Med Chem 59:10329–10334

    Article  CAS  Google Scholar 

  2. Greene TF, Wang S, Greene LM, Nathwani SM, Pollock JK, Malebari AM, Mccabe T, Twamley B, O'Boyle NM, Zisterer DM (2015) Synthesis and biochemical evaluation of 3-phenoxy-1,4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. J Med Chem 59:90–113

    Article  Google Scholar 

  3. Fu D-J, Fu L, Liu Y-C, Wang J-W, Wang Y-Q, Han B-K, Li X-R, Zhang C, Li F, Song J, Zhao B, Mao R-W, Zhao R-H, Zhang S-Y, Zhang L, Zhang Y-B, Liu H-M (2017) Structure-activity relationship studies of β-lactam-azide analogues as orally active antitumor agents targeting the tubulin colchicine site. Sci Rep 7:12788

    Article  Google Scholar 

  4. Wu CH, Bai LY, Tsai MH, Chu PC, Chiu CF, Chen MY, Chiu SJ, Chiang JH, Weng JR (2016) Pharmacological exploitation of the phenothiazine antipsychotics to develop novel antitumor agents–a drug repurposing strategy. Sci Rep 6:27540

    Article  CAS  Google Scholar 

  5. Jeleń M, Pluta K, Zimecki M, Morak-Młodawska B, Artym J, Kocięba M (2015) 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur J Med Chem 89:411–420

    Article  Google Scholar 

  6. Maddila S, Naicker K, Momin MIK, Rana S, Gorle S, Maddila S, Yalagala K, Singh M, Koorbanally NA, Jonnalagadda SB (2016) Novel 2-(1-(substitutedbenzyl)-1 H -tetrazol-5-yl)-3-phenylacrylonitrile derivatives: synthesis, in vitro antitumor activity and computational studies. Med Chem Res 25:283–291

    Article  CAS  Google Scholar 

  7. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, Dedhar S, Supuran CT (2011) Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 54:1896–1902

    Article  CAS  Google Scholar 

  8. Bouissane L, El KS, Léonce S, Pfeiffer B, Rakib EM, Khouili M, Guillaumet G (2006) Synthesis and biological evaluation of N-(7-indazolyl)benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg Med Chem 14:1078–1088

    Article  CAS  Google Scholar 

  9. Coxon CR, Anscombe E, Harnor SJ, Martin MP, Carbain B, Golding BT, Hardcastle IR, Harlow LK, Korolchuk S, Matheson CJ, Newell DR, Noble MEM, Sivaprakasam M, Tudhope SJ, Turner DM, Wang LZ, Wedge SR, Wong C, Griffin RJ, Endicott JA, Cano C (2017) Cyclin-dependent kinase (CDK) inhibitors: structure–activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines. J Med Chem 60:1746–1767

    Article  CAS  Google Scholar 

  10. Kamal A, Shankaraiah N, Devaiah V, Laxma Reddy K, Juvekar A, Sen S, Kurian N, Zingde S (2008) Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg Med Chem Lett 18:1468–1473

    Article  CAS  Google Scholar 

  11. Singh P, Raj R, Kumar V, Mahajan MP, Bedi PMS, Kaur T, Saxena AK (2012) 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 47:594–600

    Article  CAS  Google Scholar 

  12. Fu DJ, Liu JF, Zhao RH, Li JH, Zhang SY, Zhang YB (2017) Design and antiproliferative evaluation of novel sulfanilamide derivatives as potential tubulin polymerization inhibitors. Molecules 22:1470

    Article  Google Scholar 

  13. Kamal A, Shaik B, Nayak VL, Nagaraju B, Kapure JS, Shaheer Malik M, Shaik TB, Prasad B (2014) Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg Med Chem 22:5155–5167

    Article  CAS  Google Scholar 

  14. Odlo K, Hentzen J, Dit Chabert JF, Ducki S, Gani OABSM, Sylte I, Skrede M, Flørenes VA, Hansen TV (2008) 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg Med Chem 16:4829–4838

    Article  CAS  Google Scholar 

  15. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Xi C (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev 116:3086

    Article  CAS  Google Scholar 

  16. Holstein JM, Anhäuser L, Rentmeister A (2016) Modifying the 5'-cap for click reactions of eukaryotic mRNA and to tune translation efficiency in living cells. Angew Chem Int Ed Engl 55:10899–10903

    Article  CAS  Google Scholar 

  17. Robertson S, Martinez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, Patel S (2016) Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci 130:1237

    Article  CAS  Google Scholar 

  18. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198

    Article  CAS  Google Scholar 

  19. Arai H, Miyakawa K, Denda T, Mizukami T, Horie Y, Izawa N, Hirakawa M, Ogura T, Tsuda T, Yu S (2017) Early morphological change for predicting outcome in metastatic colorectal cancer after regorafenib. Oncotarget 8:110530–110539

    PubMed  PubMed Central  Google Scholar 

  20. Gonçalves BMF, Salvador JAR, Marín S, Cascante M (2016) Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives. Eur J Med Chem 114:101–117

    Article  Google Scholar 

  21. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Bio 15:49–63

    Article  CAS  Google Scholar 

  22. Inoueyamauchi A, Jeng PS, Kim K, Chen HC, Han S, Ganesan YT, Ishizawa K, Jebiwott S, Dong Y, Pietanza MC (2017) Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat Comm 8:16078

    Article  CAS  Google Scholar 

  23. Fu DJ, Zhang SY, Liu YC, Zhang L, Liu JJ, Song J, Zhao RH, Li F, Sun HH, Liu HM (2016) Design, synthesis and antiproliferative activity studies of novel dithiocarbamate-chalcone derivates. Bioorg Med Chem Lett 26:3918–3922

    Article  CAS  Google Scholar 

  24. Guggilapu SD, Guntuku L, Reddy TS, Nagarsenkar A, Sigalapalli DK, Naidu VGM, Bhargava SK, Bathini NB (2017) Synthesis of thiazole linked indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur J Med Chem 138:83–95

    Article  CAS  Google Scholar 

  25. Mustafa M, Abdelhamid D, Abdelhafez EMN, Ibrahim MAA, Gamal-Eldeen AM, Aly OM (2017) Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur J Med Chem 141:293–305

    Article  CAS  Google Scholar 

  26. Mangiatordi GF, Trisciuzzi D, Alberga D, Denora N, Iacobazzi RM, Gadaleta D, Catto M, Nicolotti O (2017) Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur J Med Chem 139:792–803

    Article  CAS  Google Scholar 

  27. Lin H-Y, Han H-W, Sun W-X, Yang Y-S, Tang C-Y, Lu G-H, Qi J-L, Wang X-M, Yang Y-H (2018) Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur J Med Chem 144:137–150

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the fund of The First Affiliated Hospital of Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shewei Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhen, Y., Guo, M. et al. Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors. Invest New Drugs 36, 1147–1157 (2018). https://doi.org/10.1007/s10637-018-0632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0632-7

Keywords

Navigation