New NO- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: in vitro and in vivo evaluations

  • Elisabetta Bigagli
  • Cristina Luceri
  • Maria De Angioletti
  • Konstantin Chegaev
  • Mario D’Ambrosio
  • Chiara Riganti
  • Elena Gazzano
  • Simona Saponara
  • Mariangela Longini
  • Francesca Luceri
  • Lorenzo Cinci


Chemotherapy for castration-resistant prostate cancer (CRPC) is only temporarily effective due to the onset of chemoresistance. We investigated the efficacy of NO- and H2S-releasing doxorubicins (NitDox and H2SDox) in overcoming drug resistance and evaluated their safety. New and innovative NO- and H2S-releasing doxorubicins (NitDox and H2SDox) showed a good intracellular accumulation and high cytotoxic activity in vitro in an androgen-independent and doxorubicin-resistant DU-145 prostate cancer cell line. Nude mice were subcutaneously injected with 4*106 DU-145 cells and treated once a week for 3 weeks with 5 mg/kg doxorubicin, NitDox, H2SDox or vehicle, i.p. Animal weight, tumor volume, intra-tumoral drug accumulation, apoptosis and the presence of nitrotyrosine and sulfhydryl (SH) groups within the tumor, were evaluated. Cardiotoxicity was assessed by measuring troponin plasma levels and the left ventricular wall thickness. In vivo, NitDox and H2SDox accumulated inside the tumors, significantly reduced tumor volumes by 60%, increased the percentage of apoptotic cells in both the inner and the outer parts of the tumors and the presence of nitrotyrosine and SH groups. Doxorubicin treatment was associated with reduced body weight and cardiotoxicity. On the contrary, NitDox and H2SDox were well tolerated and had a better safety profile. Combining efficacy with reduced cardiovascular side effects, NitDox and H2SDox are promising novel therapeutic agents for reversing chemoresistance in CRCP.


Castration-resistant prostate cancer Doxorubicin P-glycoprotein p 



The authors are very grateful to Prof. Piero Dolara for critical reading of the manuscript and his useful suggestions.


This work was supported by Ministry of Education, University and Research (MIUR) by the grant FIRB 2012 code RBFR12SOQ1: “Optimization of oncology therapy: novel drugs affecting multidrug resistance”; Italian Association for Cancer Research (IG15232).

Compliance with ethical standards

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal care and experimental protocols were approved by the Italian Ministry of Health with authorization number 49/2016-PR 21/01/2016.

Supplementary material

10637_2018_590_Fig11_ESM.gif (20 kb)
Supplementary Figure 1

GI50 of cancer cell lines treated with doxorubicin. GI50 was calculated as reported in the Materials and Methods section, on 60 cancer cell lines of the NCI panel, after 48 h treatment with 10−4 to 10−8 M doxorubicin (here indicated as compound 123,127). (GIF 20 kb)

10637_2018_590_MOESM1_ESM.tif (325 kb)
High resolution image (TIFF 324 kb)


  1. 1.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M, Wu T, Regan MM, Meyer CA, Carroll JS, Manrai AK, Jänne OA, Balk SP, Mehra R, Han B, Chinnaiyan AM, Rubin MA, True L, Fiorentino M, Fiore C, Loda M, Kantoff PW, Liu XS, Brown M (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nakazawa M, Paller C, Kyprianou N (2017) Mechanism of therapeutic resistance in prostate cancer. Curr Oncol Rep 19(2):13. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
  4. 4.
    Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, D'Amico AV, Eastham JA, Enke CA, Farrington TA, Higano CS, Horwitz EM, Kane CJ, Kawachi MH, Kuettel M, Kuzel TM, Lee RJ, Malcolm AW, Miller D, Plimack ER, Pow-Sang JM, Raben D, Richey S, Roach M 3rd, Rohren E, Rosenfeld S, Schaeffer E, Small EJ, Sonpavde G, Srinivas S, Stein C, Strope SA, Tward J, Shead DA, Ho M (2014) National Comprehensive Cancer Network. Prostate cancer, version 2.2014. J Natl Compr Cancer Netw 12(5):686–718 CrossRefGoogle Scholar
  6. 6.
    Thadani-Mulero M, Nanus DM, Giannakakou P (2012) Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 72:4611–4615. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N (2010) Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 70:7992–8002. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, Scagliotti GV (2015) Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev 41:884–892. CrossRefPubMedGoogle Scholar
  9. 9.
    Torti FM, Aston D, Lum BL, Kohler M, Williams R, Spaulding JT, Shortliffe L, Freiha FS (1983) Weekly doxorubicin in endocrine-refractory carcinoma of the prostate. J Clin Oncol 1(8):477–482. CrossRefPubMedGoogle Scholar
  10. 10.
    Sella A, Kilbourn R, Amato R, Bui C, Zukiwski AA, Ellerhorst J, Logothetis CJ (1994) Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer. J Clin Oncol 12(4):683–688. CrossRefPubMedGoogle Scholar
  11. 11.
    Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN, Park MA, Qureshi I, Lee R, Dent P, Kukreja RC (2010) Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci U S A 107(42):18202–18207. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shankaranarayanan JS, Kanwar JR, Al-Juhaishi AJ, Kanwar RK (2016) Doxorubicin conjugated to immunomodulatory anticancer Lactoferrin displays improved cytotoxicity overcoming prostate Cancer chemo resistance and inhibits tumour development in TRAMP mice. Sci Rep 6:32062. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Riganti C, Rolando B, Kopecka J, Campia I, Chegaev K, Lazzarato L, Federico A, Fruttero R, Ghigo D (2013) Mitochondrial-targeting nitrooxy-doxorubicin: a new approach to overcome drug resistance. Mol Pharm 10(1):161–174. CrossRefPubMedGoogle Scholar
  14. 14.
    Chegaev K, Riganti C, Lazzarato L, Rolando B, Guglielmo S, Campia I, Fruttero R, Bosia A, Gasco A (2011) Nitric oxide donor – doxorubicin conjugates accumulate into doxorubicin resistant human colon cancer cells inducing cytotoxicity. ACS Med Chem Lett 2(7):494–497. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gazzano E, Chegaev K, Rolando B, Blangetti M, Annaratone L, Ghigo D, Fruttero R, Riganti C (2016) Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorg Med Chem 24(5):967–975. CrossRefPubMedGoogle Scholar
  16. 16.
    Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A (2016) H2S-donating Doxorubicins may overcome cardiotoxicity and multidrug resistance. J Med Chem 59(10):4881–4889. CrossRefPubMedGoogle Scholar
  17. 17.
    Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14(9):623–641. CrossRefPubMedGoogle Scholar
  18. 18.
    Shen Y, Shen Z, Luo S, Guo W, Zhu YZ (2015) The Cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxidative Med Cell Longev 2015:925167–925113. CrossRefGoogle Scholar
  19. 19.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229. CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642. CrossRefPubMedGoogle Scholar
  21. 21.
    Wong CC, Sagineedu SR, Sumon SH, Sidik SM, Phillips R, Lajis NH, Stanslas J. NCI in vitro and in silico anticancer screen, cell cycle pertubation and apoptosis-inducing potential of new acylated, benzylidene and isopropylidene derivatives of andrographolide. Environ Toxicol Pharmacol 38(2):489–501.
  22. 22.
    Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65(2):516–525 PubMedGoogle Scholar
  23. 23.
    Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS (1997) Modulation of apoptosis by Sulindac, curcumin, Phenylethyl-3-methylcaffeate, and 6-Phenyihexyl Isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res 57:1301–1305 PubMedGoogle Scholar
  24. 24.
    Cinci L, Luceri C, Bigagli E, Carboni I, Paccosi S, Parenti A, Guasti D, Coronnello M (2016) Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype. Cancer Med 5(6):1279–1291. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Baggetto LG, Dong M, Bernaud J, Espinosa L, Rigal D, Bonvallet R, Marthinet E (1998) In vitro and in vivo reversal of cancer cell multidrug resistance by the semi-synthetic antibiotic tiamulin. Biochem Pharmacol 1;56(9):1219–1228 CrossRefGoogle Scholar
  26. 26.
    Alessandri G, Filippeschi S, Sinibaldi P, Mornet F, Passera P, Spreafico F, Cappa PM, Gullino PM (1987) Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res 47:4243–4247 PubMedGoogle Scholar
  27. 27.
    Adams CWM (1956) A stricter interpretation of the ferric ferricyanide reaction with particular reference to the demonstration of protein-bound sulphydryl and di-sulphide. J Histochem Cytochem 4(1):23–35. CrossRefPubMedGoogle Scholar
  28. 28.
    Petrioli R, Fiaschi AI, Francini E, Pascucci A, Francini G (2008) The role of doxorubicin and epirubicin in the treatment of patients with metastatic hormone-refractory prostate cancer. Cancer Treat Rev 34:710–718. CrossRefPubMedGoogle Scholar
  29. 29.
    Bhangal G, Halford S, Wang J, Roylance R, Shah R, Waxman J (2000) Expression of the multidrug resistance gene in human prostate cancer. Urol Oncol 5(3):118–121 CrossRefPubMedGoogle Scholar
  30. 30.
    Sharom FJ (2011) Multidrug resistance protein (P-glycoprotein; MDR1). Biochemical Society Essays Biochem 50:161–178 CrossRefGoogle Scholar
  31. 31.
    Wu D, Liu L, Yan X, Wang C, Wang Y, Han K, Lin S, Gan Z, Min D (2017) Pleiotrophin promotes chemoresistance to doxorubicin in osteosarcoma by upregulating P-glycoprotein. Oncotarget 8(38):63857–63870. PubMedPubMedCentralGoogle Scholar
  32. 32.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F, ESMO Guidelines Working Group (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol Suppl 7:155–66.
  33. 33.
    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Patel KJ, Tannock IF (2009) The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors. BMC Cancer 9:356. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chegaev K, Fraix A, Gazzano E, Abd-Ellatef GE, Blangetti M, Rolando B, Conoci S, Riganti C, Fruttero R, Gasco A, Sortino S (2017) Light-regulated NO release as a novel strategy to overcome doxorubicin multidrug resistance. ACS Med Chem Lett 8(3):361–365. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H (2003) Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Haematol 82:218–222. Google Scholar
  38. 38.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circ 109:2749–2754. CrossRefGoogle Scholar
  39. 39.
    Tian S, Hirshfield KM, Jabbour SK, Toppmeyer D, Haffty BG, Khan AJ, Goyal S (2014) Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Front Oncol 4:277. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905. CrossRefPubMedGoogle Scholar
  41. 41.
    Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40(1):16–23. CrossRefPubMedGoogle Scholar
  42. 42.
    Xi L, Zhu SG, Das A, Chen Q, Durrant D, Hobbs DC, Lesnefsky EJ, Kukreja RC (2012) Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 26(4):274–284. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu SG, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L (2011) Dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol 57(21):2181–2189. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Su YW, Liang C, Jin HF, Tang XY, Han W, Chai LJ, Zhang CY, Geng B, Tang CS, Du JB (2009) Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J 73(4):741–749 CrossRefPubMedGoogle Scholar
  45. 45.
    Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci U S A 04(46):17907–17908. CrossRefGoogle Scholar
  46. 46.
    Liu MH, Lin XL, Zhang Y, He J, Tan TP, Wu SJ, Liu J, Tian W, Chen L, Yu S, Li J, Yuan C (2015) Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting reactive oxygen species-activated extracellular signal-regulated kinase 1/2 in H9c2 cardiac myocytes. Mol Med Rep 12:6841–6848. CrossRefPubMedGoogle Scholar
  47. 47.
    Guo R, Lin J, Xu W, Shen N, Mo L, Zhang C, Feng J (2013) Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. Int J Mol Med 31:644–650. CrossRefPubMedGoogle Scholar
  48. 48.
    Wang XY, Yang CT, Zheng DD, Mo LQ, Lan AP, Yang ZL, Hu F, Chen PX, Liao XX, Feng JQ (2012) Hydrogen sulfide protects H9c2 cells against doxorubicin-induced cardiotoxicity through inhibition of endoplasmic reticulum stress. Mol Cell Biochem 363:419–426. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elisabetta Bigagli
    • 1
  • Cristina Luceri
    • 1
  • Maria De Angioletti
    • 2
    • 3
  • Konstantin Chegaev
    • 4
  • Mario D’Ambrosio
    • 1
  • Chiara Riganti
    • 5
  • Elena Gazzano
    • 5
  • Simona Saponara
    • 6
  • Mariangela Longini
    • 7
  • Francesca Luceri
    • 8
  • Lorenzo Cinci
    • 1
  1. 1.Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA – Section of Pharmacology and ToxicologyUniversity of FlorenceFlorenceItaly
  2. 2.Cancer Genetics and Gene Transfer Laboratory, Core Research LaboratoryIstituto Toscano TumoriFlorenceItaly
  3. 3.Institute of Chemistry of Organometallic CompoundsCNRFlorenceItaly
  4. 4.Department of Drug Science and TechnologyUniversity of TurinTurinItaly
  5. 5.Department of OncologyUniversity of TurinTurinItaly
  6. 6.Department of Life SciencesUniversity of SienaSienaItaly
  7. 7.Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
  8. 8.General Laboratory UnitAzienda Ospedaliero-Universitaria CareggiFlorenceItaly

Personalised recommendations