Skip to main content
Log in

Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition

  • PHASE II STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background Mammalian Target of Rapamycin Complex 1 (mTORC1) inhibitors enhance chemotherapy response in acute myelogenous leukemia (AML) cells in vitro. However whether inhibiting mTORC1 enhances clinical response to AML chemotherapy remains controversial. We previously optimized measurement of mTORC1’s kinase activity in AML blasts during clinical trials using serial phospho-specific flow cytometry of formaldehyde-fixed whole blood or marrow specimens. To validate mTORC1 as a therapeutic target in AML, we performed two clinical trials combining an mTORC1 inhibitor (sirolimus) and MEC (mitoxantrone, etoposide, cytarabine) in patients with relapsed, refractory, or untreated high-risk AML. Methods Flow cytometric measurements of ribosomal protein S6 phosphorylation (pS6) were performed before and during sirolimus treatment to determine whether mTORC1 inhibition enriched for chemotherapy response. Results In 51 evaluable subjects, the overall response rate (ORR) to the combination regimen was 47% (95% confidence interval 33–61%, 33% CR, 2% CRi, 12% PR) and similar toxicity to historic experience with MEC alone. 37 subjects had baseline pS6 measured pre-sirolimus, of whom 27 (73%) exhibited mTORC1 activity. ORR was not significantly different between subjects with and without baseline mTORC1 activity (52% vs 40%, respectively, p = 0.20). The ORR among subjects with baseline target activation and mTORC1 inhibition during therapy was 71% (12/17) compared to 20% (2/10) in subjects without target inhibition. Conclusions Fixed, whole blood pS6 by flow cytometry may be a predictive biomarker for clinical response to mTORC1 inhibitor-based regimens. These data provide clinical confirmation that mTORC1 activation mediates chemotherapy resistance in patients with AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roboz GJ, Rosenblat T, Arellano M, Gobbi M, Altman JK, Montesinos P, O’Connell C, Solomon SR, Pigneux A, Vey N, Hills R et al. (2014) International randomized phase III study of elacytarabine versus investigator choice in patients with relapsed/refractory acute myeloid leukemia. J Clin Oncol 32(18):1919–1926

    Article  PubMed  CAS  Google Scholar 

  2. Ley T (2013) ea.: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  PubMed  CAS  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xu Q, Thompson JE, Carroll M (2005) Mtor regulates cell survival after etoposide treatment in primary aml cells. Blood 106(13):4261–4268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, Benzaquen D, Laurent G, Huguet F, Payrastre B (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105(6):2527–2534

    Article  PubMed  CAS  Google Scholar 

  6. Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, Thomas D, Wierda W, Apostolidou E, Albitar M, O'Brien S et al (2006) Phase i/ii study of the mammalian target of rapamycin inhibitor everolimus (rad001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12(17):5165–5173

    Article  PubMed  CAS  Google Scholar 

  7. Yee KWL, Garcia-Manero G, Thomas D, Ravandi-Kashani F, Verstovsek S, Andreeff M, Dancey JE, Giles FJ (2004) A phase ii study of temsirolimus (cci-779) in patients with advanced leukemias. Blood 104(11):4523a

    Google Scholar 

  8. Perl AE, Kasner MT, Tsai DE, Vogl DT, Loren AW, Schuster SJ, Porter DL, Stadtmauer EA, Goldstein SC, Frey NV, Nasta SD et al (2009) A phase i study of the mammalian target of rapamycin inhibitor sirolimus and mec chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 15(21):6732–6739

    Article  PubMed  CAS  Google Scholar 

  9. Park S, Chapuis N, Saint Marcoux F, Recher C, Prebet T, Chevallier P, Cahn JY, Leguay T, Bories P, Witz F, Lamy T et al. (2013) A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia 27(7):1479–1486

    Article  PubMed  CAS  Google Scholar 

  10. Amadori S, Stasi R, Martelli AM, Venditti A, Meloni G, Pane F, Martinelli G, Lunghi M, Pagano L, Cilloni D, Rossetti E et al (2012) Temsirolimus, an mtor inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: Results of a phase ii gimema study (aml-1107). Br J Haematol 156(2):205–212

    Article  PubMed  CAS  Google Scholar 

  11. Perl AE, Kasner MT, Shank D, Luger SM, Carroll M (2012) Single-cell pharmacodynamic monitoring of s6 ribosomal protein phosphorylation in aml blasts during a clinical trial combining the mtor inhibitor sirolimus and intensive chemotherapy. Clin Cancer Res: an official journal of the American Association for Cancer Research 18(6):1716–1725

    Article  CAS  Google Scholar 

  12. Loi S, Michiels S, Baselga J, Bartlett JM, Singhal SK, Sabine VS, Sims AH, Sahmoud T, Dixon JM, Piccart MJ, Sotiriou C (2013) Pik3ca genotype and a pik3ca mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One 8(1):e53292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Woost PG, Solchaga LA, Meyerson HJ, Shankey TV, Goolsby CL, Jacobberger JW (2011) High-resolution kinetics of cytokine signaling in human cd34/cd117-positive cells in unfractionated bone marrow. Blood 117(15):e131–e141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP (1982) Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol 5(6):649–655

    Article  PubMed  CAS  Google Scholar 

  15. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F et al (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21(24):4642–4649

    Article  PubMed  Google Scholar 

  16. Schemper M, Smith TL (1996) A note on quantifying follow-up in studies of failure time. Control Clin Trials 17(4):343–346

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L, Dugan K, Lum B, Chin DL, Dewald G, Paietta E et al (2004) Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: A phase iii trial (e2995). J Clin Oncol 22(6):1078–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chow S, Minden MD, Hedley DW (2006) Constitutive phosphorylation of the s6 ribosomal protein via mtor and erk signaling in the peripheral blasts of acute leukemia patients. Exp Hematol 34(9):1183–1191

    Article  PubMed  CAS  Google Scholar 

  19. Litzow MR, Wang XV, Carroll MP, Karp JE, Ketterling R, Kaufmann SH, Lazarus HM, Luger SM, Paietta EM, Rowe JM, Altman JK et al (2014) A randomized phase ii trial of three novel regimens for relapsed/ refractory acute myeloid leukemia (aml) demonstrates encouraging results with a flavopiridol-based regimen: Results of eastern cooperative oncology group (ecog) trial e1906. Blood 124:3742–3742

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge contributions of Joy Cannon, Amanda Cloud, Kristin Coffan, Martina DiMeglio, Cesary Swider, and Doris Shank for their contribution to this research. We also wish to thank the nurses involved for their excellent care of enrolled subjects.

Funding

Supported in part by the Abramson Cancer Center Support Grant P30-CA016520 (RM), the National Cancer Institute (K23 CA141054), the When Everyone Survives Foundation and the American Cancer Society (IRG-78-002-30) to AEP. AEP is a fellow of the Institute for Translational Medicine and Therapeutics at the University of Pennsylvania, which supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Perl.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasner, M.T., Mick, R., Jeschke, G.R. et al. Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Invest New Drugs 36, 657–666 (2018). https://doi.org/10.1007/s10637-018-0585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0585-x

Keywords

Navigation