Skip to main content

Advertisement

Log in

PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Breast cancer has been emerging as a most common threat among women, thus many efforts were made to find drugs for fighting breast cancer. So far, PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) inhibitors have been believed to be effective drugs until frequent resistance emerged. Recently, PI3K H1047R mutation has been reported to sensitize breast cancer cells to PI3K inhibition by aspirin. Considering aspirin activates AMPK (AMP-activated protein kinase) simultaneously, it is possible that AMPK activators and PI3K inhibitors can synergistically inhibit breast cancers. Here we clearly observed synergistic suppression of cell growth in all three breast cancer cell lines (MCF-7, MDA-MB-361 and HCC38) when co-treating cells with PI3K inhibitor GDC-0941 and AMPK activator AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide). What is more, it is rather remarkable that the synergistic effect was much more dramatic in PIK3CA (PI3K catalytic subunit alpha) mutated (E545K) cells (MCF-7 and MDA-MB-361) than in PIK3CA wild-type cells (HCC38), which implied there is a relationship between PI3K genetic status and the efficacy of combination therapy. By using PIK3CA wild-type isogenic MCF-7 cell line, which exhibited attenuated cell proliferation compared with the parental MCF-7 cell line, we found endogenous reverse mutation of PIK3CA E545K alleles to wild-type sequence in MCF-7 cells dramatically impaired the synergy of PI3Ki&AMPKa (combinatorial PI3K inhibition and AMPK activation). Furthermore, PI3Ki&AMPKa significantly attenuated tumorigenesis of parental MCF-7 cells but not PIK3CA wild-type isogenic MCF-7 cells in tumor xenograft models. Taken together, our results suggest a promising precision therapy of PI3Ki&AMPKa in PIK3CA mutant breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. https://doi.org/10.3322/caac.21254

    Article  PubMed  Google Scholar 

  2. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501. https://doi.org/10.1038/nature12912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, Aimone P, Fretault N, Dharan B, Tavorath R, Hirawat S (2016) PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Oncotargets Ther 9:203–210. https://doi.org/10.2147/Ott.S89967

    Article  CAS  Google Scholar 

  4. Dienstmann R, Rodon J, Serra V, Tabernero J (2014) Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther 13(5):1021–1031. https://doi.org/10.1158/1535-7163.Mct-13-0639

    Article  PubMed  CAS  Google Scholar 

  5. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, Gao S, Mills GB, Brugge JS (2012) Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21(2):227–239. https://doi.org/10.1016/j.ccr.2011.12.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Edgar KA, Wallin JJ, Berry M, Lee LB, Prior WW, Sampath D, Friedman LS, Belvin M (2010) Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors. Cancer Res 70(3):1164–1172. https://doi.org/10.1158/0008-5472.CAN-09-2525

    Article  PubMed  CAS  Google Scholar 

  7. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJA, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51(18):5522–5532. https://doi.org/10.1021/jm800295d

    Article  PubMed  CAS  Google Scholar 

  8. Schmid P, Pinder SE, Wheatley D, Macaskill J, Zammit C, Hu J, Price R, Bundred N, Hadad S, Shia A, Sarker SJ, Lim L, Gazinska P, Woodman N, Korbie D, Trau M, Mainwaring P, Gendreau S, Lackner MR, Derynck M, Wilson TR, Butler H, Earl G, Parker P, Purushotham A, Thompson A (2016) Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor Pictilisib plus Anastrozole compared with Anastrozole alone in patients with estrogen receptor-positive breast cancer. J Clin Oncol 34(17):1987–1994. https://doi.org/10.1200/JCO.2015.63.9179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McConnell JR, McAlpine SR (2013) Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 23(7):1923–1928. https://doi.org/10.1016/j.bmcl.2013.02.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shi S, Yao W, Xu J, Long J, Liu C, Yu X (2012) Combinational therapy: new hope for pancreatic cancer? Cancer Lett 317(2):127–135. https://doi.org/10.1016/j.canlet.2011.11.029

    Article  PubMed  CAS  Google Scholar 

  11. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245. https://doi.org/10.1038/emm.2016.81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. El-Masry OS, Brown BL, Dobson PR (2012) Effects of activation of AMPK on human breast cancer cell lines with different genetic backgrounds. Oncol Lett 3(1):224–228. https://doi.org/10.3892/ol.2011.458

    Article  PubMed  CAS  Google Scholar 

  13. Theodoropoulou S, Brodowska K, Kayama M, Morizane Y, Miller JW, Gragoudas ES, Vavvas DG (2013) Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PLoS One 8(1):e52852. https://doi.org/10.1371/journal.pone.0052852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xiong L, Liu Z, Ouyang G, Lin L, Huang H, Kang H, Chen W, Miao X, Wen Y (2017) Autophagy inhibition enhances photocytotoxicity of Photosan-II in human colorectal cancer cells. Oncotarget 8(4):6419–6432. https://doi.org/10.18632/oncotarget.14117

    Article  PubMed  Google Scholar 

  15. Pawalowska M, Markowska A (2012) The influence of metformin in the etiology of selected cancers. Contemp Oncol (Pozn) 16(3):223–229. https://doi.org/10.5114/wo.2012.29289

    Article  CAS  Google Scholar 

  16. Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13(1):11–22. https://doi.org/10.1016/j.ccr.2007.11.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jose C, Hebert-Chatelain E, Bellance N, Larendra A, Su M, Nouette-Gaulain K, Rossignol R (2011) AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta 1807(6):707–718. https://doi.org/10.1016/j.bbabio.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  18. El-Masry OS, Al-Sakkaf K, Brown BL, Dobson PR (2015) Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: leptin inhibits the effectiveness of AMPK activation. Oncol Rep 34(4):1675–1680. https://doi.org/10.3892/or.2015.4198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD, Saltiel AR, Inoki K (2013) Inhibition of AMPK catabolic action by GSK3. Mol Cell 50(3):407–419. https://doi.org/10.1016/j.molcel.2013.03.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Henry WS, Laszewski T, Tsang T, Beca F, Beck AH, McAllister SS, Toker A (2017) Aspirin suppresses growth in PI3K-mutant breast cancer by activating AMPK and inhibiting mTORC1 signaling. Cancer Res 77(3):790–801. https://doi.org/10.1158/0008-5472.CAN-16-2400

    Article  PubMed  CAS  Google Scholar 

  21. Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316(17):2961–2968. https://doi.org/10.1016/j.yexcr.2010.06.021

    Article  PubMed  CAS  Google Scholar 

  22. Wallin JJ, Guan J, Prior WW, Lee LB, Berry L, Belmont LD, Koeppen H, Belvin M, Friedman LS, Sampath D (2012) GDC-0941, a novel class I selective PI3K inhibitor, enhances the efficacy of docetaxel in human breast cancer models by increasing cell death in vitro and in vivo. Clin Cancer Res 18(14):3901–3911. https://doi.org/10.1158/1078-0432.CCR-11-2088

    Article  PubMed  CAS  Google Scholar 

  23. O'Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, Punnoose EA, Guan J, Berry L, Prior WW, Amler LC, Belvin M, Friedman LS, Lackner MR (2010) Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 16(14):3670–3683. https://doi.org/10.1158/1078-0432.CCR-09-2828

    Article  PubMed  CAS  Google Scholar 

  24. Beaver JA, Gustin JP, Yi KH, Rajpurohit A, Thomas M, Gilbert SF, Rosen DM, Ho Park B, Lauring J (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19(19):5413–5422. https://doi.org/10.1158/1078-0432.CCR-13-0884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang XL, Lin FJ, Guo YJ, Shao ZM, Ou ZL (2014) Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways. Onco Targets Ther 7:1033–1042. https://doi.org/10.2147/OTT.S63145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Samuels Y, Diaz LA, Jr., Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7 (6):561–573. doi:https://doi.org/10.1016/j.ccr.2005.05.014

  27. Knudsen ES, Knudsen KE (2008) Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8(9):714–724. https://doi.org/10.1038/nrc2401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  PubMed  CAS  Google Scholar 

  29. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940

    Article  PubMed  CAS  Google Scholar 

  30. Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, de Stanchina E, Baselga J, Liu N, Chandarlapaty S, Rosen N (2014) Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov 4(3):334–347. https://doi.org/10.1158/2159-8290.CD-13-0611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N (2014) Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One 9(5):e98207. https://doi.org/10.1371/journal.pone.0098207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li XY, Lehar J, Wiesmann M, Wartmann M, Chen Y, Cao ZA, Pinzon-Ortiz M, Kim S, Schlegel R, Huang A, Engelman JA (2014) CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26(1):136–149. https://doi.org/10.1016/j.ccr.2014.05.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Abraham J (2015) PI3K/AKT/mTOR pathway inhibitors: the ideal combination partners for breast cancer therapies? Expert Rev Anticancer Ther 15(1):51–68. https://doi.org/10.1586/14737140.2015.961429

    Article  PubMed  CAS  Google Scholar 

  34. Liang X, Wang P, Gao Q, Tao X (2014) Exogenous activation of LKB1/AMPK signaling induces G(1) arrest in cells with endogenous LKB1 expression. Mol Med Rep 9(3):1019–1024. https://doi.org/10.3892/mmr.2014.1916

    Article  PubMed  CAS  Google Scholar 

  35. Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38(6):698–707. https://doi.org/10.1016/j.ctrv.2011.11.005

    Article  PubMed  CAS  Google Scholar 

  36. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  37. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia MM, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerod A, Lee MTM, Shen CY, Tee BTK, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, Van Tveer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis JS, SAJR A, Salomon AV, Borresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR, Osbreac (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404. https://doi.org/10.1038/nature11017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zheng D, Zhu G, Liao S, Yi W, Luo G, He J, Pei Z, Li G, Zhou Y (2015) Dysregulation of the PI3K/Akt signaling pathway affects cell cycle and apoptosis of side population cells in nasopharyngeal carcinoma. Oncol Lett 10(1):182–188. https://doi.org/10.3892/ol.2015.3218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000. https://doi.org/10.1158/0008-5472.CAN-05-2612

    Article  PubMed  CAS  Google Scholar 

  40. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68(22):9221–9230. https://doi.org/10.1158/0008-5472.CAN-08-1740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Haian Fu (Emory University, Atlanta, USA) for kindly giving us the parental MCF-7 and PIK3CA wild-type isogenic MCF-7 cell lines. This work is funded by the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 2050205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tang, Y., Yan, M. et al. PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation. Invest New Drugs 36, 763–772 (2018). https://doi.org/10.1007/s10637-018-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0563-3

Keywords

Navigation