Skip to main content

Advertisement

Log in

The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing’s sarcoma cell line

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing’s sarcoma cells to tenovin-1. We examined its effects in two Ewing’s sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1’s effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1’s mode of action by demonstrating that it can induce different pathways of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lessnick SL, Ladanyi M (2012) Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 7:145–159

    Article  CAS  PubMed  Google Scholar 

  2. Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley MC, Kovar H, Grimer R, Whelan J, Claude L, Delattre O, Paulussen M, Picci P, Sundby HK, van den Berg H, Ladenstein R, Michon J, Hjorth L, Judson I, Luksch R, Bernstein ML, Marec-Berard P, Brennan B, Craft AW, Womer RB, Juergens H, Oberlin O (2015) Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol 33:3036–3046

    Article  CAS  PubMed  Google Scholar 

  3. Arnaldez FI, Helman LJ (2014) New strategies in ewing sarcoma: lost in translation? Clin Cancer Res 20:3050–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

  5. Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280:168–176

    Article  CAS  PubMed  Google Scholar 

  6. Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624

    Article  CAS  PubMed  Google Scholar 

  7. Jeong SM, Haigis MC (2015) Sirtuins in cancer: a balancing act between genome stability and metabolism. Mol Cell 38:750–758

    Article  CAS  Google Scholar 

  8. Cai SF, Chen CW, Armstrong SA (2015) Drugging chromatin in cancer: recent advances and novel approaches. Mol Cell 60:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, Bates SE, Thiele CJ (2002) MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62:6108–6115

    CAS  PubMed  Google Scholar 

  10. Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X, Hanada M, Okada T, Iwamoto Y (2003) Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem 278:15105–15115

    Article  CAS  PubMed  Google Scholar 

  11. Sakimura R, Tanaka K, Nakatani F, Matsunobu T, Li X, Hanada M, Okada T, Nakamura T, Matsumoto Y, Iwamoto Y (2005) Antitumor effects of histone deacetylase inhibitor on Ewing's family tumors. Int J Cancer 116:784–792

    Article  CAS  PubMed  Google Scholar 

  12. Sonnemann J, Dreyer L, Hartwig M, Palani CD, Hong lT, Klier U, Bröker B, Völker U, Beck JF (2007) Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing's sarcoma cells. J Cancer Res Clin Oncol 133:847–858

    Article  CAS  PubMed  Google Scholar 

  13. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJ, Pass G, Woods J, Lane DP, Westwood NJ (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ban J, Aryee DN, Fourtouna A, van der Ent W, Kauer M, Niedan S, Machado I, Rodriguez-Galindo C, Tirado OM, Schwentner R, Picci P, Flanagan AM, Berg V, Strauss SJ, Scotlandi K, Lawlor ER, Snaar-Jagalska E, Llombart-Bosch A, Kovar H (2014) Suppression of deacetylase SIRT1 mediates tumor suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma. Cancer Res 74:6578–6588

    Article  CAS  PubMed  Google Scholar 

  16. Sonnemann J, Kahl M, Siranjeevi PM, Blumrich A, Blümel L, Becker S, Wittig S, Winkler R, Krämer OH, Beck JF (2016) Reverse chemomodulatory effects of the SIRT1 activators resveratrol and SRT1720 in Ewing's sarcoma cells: resveratrol suppresses and SRT1720 enhances etoposide- and vincristine-induced anticancer activity. J Cancer Res Clin Oncol 142:17–26

    Article  CAS  PubMed  Google Scholar 

  17. Sonnemann J, Grauel D, Blümel L, Hentschel J, Marx C, Blumrich A, Focke K, Becker S, Wittig S, Schinkel S, Krämer OH, Beck JF (2015) RETRA exerts anticancer activity in Ewing's sarcoma cells independent of their TP53 status. Eur J Cancer 51:841–851

    Article  CAS  PubMed  Google Scholar 

  18. Sonnemann J, Marx C, Becker S, Wittig S, Palani CD, Krämer OH, Beck JF (2014) p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 110:656–667

    Article  CAS  PubMed  Google Scholar 

  19. Delavallée L, Cabon L, Galan-Malo P, Lorenzo HK, Susin SA (2011) AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63:221–232

    Article  PubMed  Google Scholar 

  20. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  21. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    Article  CAS  PubMed  Google Scholar 

  25. Nihal M, Ahmad N, Wood GS (2014) SIRT1 is upregulated in cutaneous T-cell lymphoma and its inhibition induces growth arrest and apoptosis. Cell Cycle 13:632–640

    Article  CAS  PubMed  Google Scholar 

  26. MacCallum SF, Groves MJ, James J, Murray K, Appleyard V, Prescott AR, Drbal AA, Nicolaou A, Cunningham J, Haydock S, Ganley IG, Westwood NJ, Coates PJ, Lain S, Tauro S (2013) Dysregulation of autophagy in chronic lymphocytic leukemia with the small-molecule Sirtuin inhibitor Tenovin-6. Sci Rep 3:1275

    Article  PubMed  PubMed Central  Google Scholar 

  27. Groves MJ, Johnson CE, James J, Prescott AR, Cunningham J, Haydock S, Pepper C, Fegan C, Pirrie L, Westwood NJ, Coates PJ, Ganley IG, Tauro S (2013) p53 and cell cycle independent dysregulation of autophagy in chronic lymphocytic leukaemia. Br J Cancer 109:2434–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirai S, Endo S, Saito R, Hirose M, Ueno T, Suzuki H, Yamato K, Abei M, Hyodo I (2014) Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS One 9:e102831

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yuan H, He M, Cheng F, Bai R, da Silva SR, Aguiar RC, Gao SJ (2017) Tenovin-6 inhibits proliferation and survival of diffuse large B-cell lymphoma cells by blocking autophagy. Oncotarget 8:14912–14924

    PubMed  PubMed Central  Google Scholar 

  30. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K (2015) Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 7:298ra117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  32. Ma L, Maruwge W, Strambi A, D'Arcy P, Pellegrini P, Kis L, de Milito A, Lain S, Brodin B (2014) SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis 5:e1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Christian Marx was supported by the Richard-Winter-Stiftung and the Deutsche Forschungsgemeinschaft (RTG 1715 SP13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sonnemann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Electronic supplementary material

ESM 1

(PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, C., Marx-Blümel, L., Lindig, N. et al. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing’s sarcoma cell line. Invest New Drugs 36, 396–406 (2018). https://doi.org/10.1007/s10637-017-0541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0541-1

Keywords

Navigation