Skip to main content

Advertisement

Log in

LFM-A13, a potent inhibitor of polo-like kinase, inhibits breast carcinogenesis by suppressing proliferation activity and inducing apoptosis in breast tumors of mice

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The goals of the present study were to define the anticancer activity of LFM-A13 (α-cyano-β-hydroxy-β-methyl-N-(2,5-dibromophenyl)-propenamide), a potent inhibitor of Polo-like kinase (PLK), in a mouse mammary cancer model induced by 7,12-dimethylbenz(a)anthracene (DMBA) in vivo and explore its anticancer mechanism(s). We also examined whether the inhibition of PLK by LFM-A13 would improve the efficiency of paclitaxel in breast cancer growth in vivo. To do this, female BALB/c mice received 1 mg of DMBA once a week for 6 weeks with oral gavage. LFM-A13 (50 mg/kg body weight) was administered intraperitoneally with DMBA administration and continued for 25 weeks. We found that LFM-A13, paclitaxel, and their combination have a significant effect on the DMBA-induced breast tumor incidence, mean tumor numbers, average tumor weight, and size. At the molecular level, the administration of LFM-A13 hindered mammary gland carcinoma development by regulating the expression of PLK1, cell cycle-regulating proteins cyclin D1, cyclin dependent kinase-4 (CDK-4), and the CDK inhibitor, p21. Moreover, LFM-A13 treatment upregulated the levels of IκB, the pro-apoptotic proteins Bax, and caspase-3, and down-regulated p53 and the antiapoptotic protein Bcl-2 in mammary tumors. The combination of LFM-A13 with paclitaxel was found to be more effective compared with either agent alone. Collectively, these results suggest that LFM-A13 has an anti-proliferative activity against breast cancer in vivo and that LFM-A13 and paclitaxel combination could be a strategy for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  2. Shulman LN, Willett W, Sievers A, Knaul FM (2010) Breast cancer in developing countries: opportunities for improved survival. J Oncol 2010:595167. https://doi.org/10.1155/2010/595167

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vanderpuye V, Grover S, Hammad N, PoojaPrabhakar SH, Olopade F, Stefan DC (2017) An update on the management of breast cancer in Africa. Infect Agent Cancer 12:13. https://doi.org/10.1186/s13027-017-0124-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumaraguruparan R, Seshagiri PB, Hara Y, Nagini S (2007) Chemoprevention of rat mammary carcinogenesis by black tea polyphenols: modulation of xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation, apoptosis, and angiogenesis. Mol Carcinog 46(9):797–806. https://doi.org/10.1002/mc.20309

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson MM, Tavares AA, Hagan IM, Nigg EA, Glover DM (2001) The mitotic roles of polo-like kinase. J Cell Sci 114(Pt 13):2357–2358

    CAS  PubMed  Google Scholar 

  6. Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10(4):265–275. https://doi.org/10.1038/nrm2653

    Article  CAS  PubMed  Google Scholar 

  7. Lee SY, Jang C, Lee KA (2014) Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod 18(1):65–71. 10.12717/DR.2014.18.1.065

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Erikson RL (2003) Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A 100(10):5789–5794. https://doi.org/10.1073/pnas.1031523100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Carcer G, Manning G, Malumbres M (2011) From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10(14):2255–2262. https://doi.org/10.4161/cc.10.14.16494

    Article  PubMed  PubMed Central  Google Scholar 

  10. Toyoshima-Morimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3(4):341–348. https://doi.org/10.1093/embo-reports/kvf069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I (2005) Polo-like kinases (Plks) and cancer. Oncogene 24(2):287–291. https://doi.org/10.1038/sj.onc.1208272

    Article  CAS  PubMed  Google Scholar 

  12. Conn CW, Hennigan RF, Dai W, Sanchez Y, Stambrook PJ (2000) Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res 60(24):6826–6831

    CAS  PubMed  Google Scholar 

  13. Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W (2002) Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22(10):3450–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R, Lu L, Dai W (1996) Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem 271(32):19402–19408

    Article  CAS  PubMed  Google Scholar 

  15. Dai W, Li Y, Ouyang B, Pan H, Reissmann P, Li J, Wiest J, Stambrook P, Gluckman JL, Noffsinger A, Bejarano P (2000) PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer. Genes Chromosom Cancer 27(3):332–336

    Article  CAS  PubMed  Google Scholar 

  16. Dai W, Liu T, Wang Q, Rao CV, Reddy BS (2002) Down-regulation of PLK3 gene expression by types and amount of dietary fat in rat colon tumors. Int J Oncol 20(1):121–126

    CAS  PubMed  Google Scholar 

  17. Uckun FM, Dibirdik I, Qazi S, Vassilev A, Ma H, Mao C, Benyumov A, Emami KH (2007) Anti-breast cancer activity of LFM-A13, a potent inhibitor of polo-like kinase (PLK). Bioorg Med Chem 15(2):800–814. https://doi.org/10.1016/j.bmc.2006.10.050

    Article  CAS  PubMed  Google Scholar 

  18. Uckun FM (2007) Chemosensitizing anti-cancer activity of LFM-A13, a leflunomide metabolite analog targeting polo-like kinases. Cell Cycle 6(24):3021–3026. https://doi.org/10.4161/cc.6.24.5096

    Article  CAS  PubMed  Google Scholar 

  19. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, Haslinger C, Garin-Chesa P, Adolf GR (2009) BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res 15(9):3094–3102. https://doi.org/10.1158/1078-0432.CCR-08-2445

    Article  CAS  PubMed  Google Scholar 

  20. Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M, Uckun FM (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 274(14):9587–9599

    Article  CAS  PubMed  Google Scholar 

  21. Uckun FM, Zheng Y, Cetkovic-Cvrlje M, Vassilev A, Lisowski E, Waurzyniak B, Chen H, Carpenter R, Chen CL (2002) In vivo pharmacokinetic features, toxicity profile, and chemosensitizing activity of alpha-cyano-beta-hydroxy-beta- methyl-N-(2,5-dibromophenyl)propenamide (LFM-A13), a novel antileukemic agent targeting Bruton's tyrosine kinase. Clin Cancer Res 8(5):1224–1233

    CAS  PubMed  Google Scholar 

  22. Fukui M, Yamabe N, Zhu BT (2010) Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur J Cancer 46(10):1882–1891. https://doi.org/10.1016/j.ejca.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hua F, Li K, JJ Y, Lv XX, Yan J, Zhang XW, Sun W, Lin H, Shang S, Wang F, Cui B, Mu R, Huang B, Jiang JD, ZW H (2015) TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations. Nat Commun 6:7951. https://doi.org/10.1038/ncomms8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahin K, Tuzcu M, Sahin N, Akdemir F, Ozercan I, Bayraktar S, Kucuk O (2011) Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr Cancer 63(8):1279–1286. https://doi.org/10.1080/01635581.2011.606955

    Article  CAS  PubMed  Google Scholar 

  25. Tuzcu M, Aslan A, Tuzcu Z, Yabas M, Bahcecioglu IH, Ozercan IH, Kucuk O, Sahin K (2012) Tomato powder impedes the development of azoxymethane-induced colorectal cancer in rats through suppression of COX-2 expression via NF-kappaB and regulating Nrf2/HO-1 pathway. Mol Nutr Food Res 56(9):1477–1481. https://doi.org/10.1002/mnfr.201200130

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Sun Q, Wang X (2016) PLK1, a potential target for cancer therapy. Transl Oncol 10(1):22–32. https://doi.org/10.1016/j.tranon.2016.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolf G, Hildenbrand R, Schwar C, Grobholz R, Kaufmann M, Stutte HJ, Strebhardt K, Bleyl U (2000) Polo-like kinase: a novel marker of proliferation: correlation with estrogen-receptor expression in human breast cancer. Pathol Res Pract 196(11):753–759. https://doi.org/10.1016/S0344-0338(00)80107-7

    CAS  PubMed  Google Scholar 

  28. Weichert W, Kristiansen G, Winzer KJ, Schmidt M, Gekeler V, Noske A, Muller BM, Niesporek S, Dietel M, Denkert C (2005) Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications. Virchows Arch 446(4):442–450. https://doi.org/10.1007/s00428-005-1212-8

    Article  CAS  PubMed  Google Scholar 

  29. King SI, Purdie CA, Bray SE, Quinlan PR, Jordan LB, Thompson AM, Meek DW (2012) Immunohistochemical detection of polo-like kinase-1 (PLK1) in primary breast cancer is associated with TP53 mutation and poor clinical outcom. Breast Cancer Res 14(2):R40. https://doi.org/10.1186/bcr3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donizy P, Halon A, Surowiak P, Kaczorowski M, Kozyra C, Matkowski R (2016) Augmented expression of polo-like kinase 1 is a strong predictor of shorter cancer-specific overall survival in early stage breast cancer at 15-year follow-up. Oncol Lett 12(3):1667–1674. https://doi.org/10.3892/ol.2016.4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. https://doi.org/10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  32. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1(8):639–649

    CAS  PubMed  Google Scholar 

  33. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. https://doi.org/10.1038/nrc2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. https://doi.org/10.1038/sj.onc.1209954

    Article  CAS  PubMed  Google Scholar 

  35. Degenhardt Y, Lampkin T (2010) Targeting polo-like kinase in cancer therapy. Clin Cancer Res 16(2):384–389. https://doi.org/10.1158/1078-0432.CCR-09-1380

    Article  CAS  PubMed  Google Scholar 

  36. Rushworth SA, Bowles KM, Barrera LN, Murray MY, Zaitseva L, MacEwan DJ (2013) BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-kappaB. Cell Signal 25(1):106–112. https://doi.org/10.1016/j.cellsig.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  37. Prashanth Kumar BN, Rajput S, Bharti R, Parida S, Mandal M (2015) BI2536--a PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed Pharmacother 74:124–132. https://doi.org/10.1016/j.biopha.2015.07.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Fatih Uckun (USC-USA) for kindly providing LFM-A13, and Prof. Gerard F. Hoyne (The University of Notre Dame Australia) for carefully reading and correcting grammar of the manuscript. The work was supported in part by the Turkish Academy of Sciences.

Funding

The work was supported in part by the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazim Sahin.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

For this type of study, formal consent is not required.

Electronic supplementary material

ESM 1

(PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, K., Tuzcu, M., Yabas, M. et al. LFM-A13, a potent inhibitor of polo-like kinase, inhibits breast carcinogenesis by suppressing proliferation activity and inducing apoptosis in breast tumors of mice. Invest New Drugs 36, 388–395 (2018). https://doi.org/10.1007/s10637-017-0540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0540-2

Keywords

Navigation