Skip to main content
Log in

Cyclodextrin polymers as nanocarriers for sorafenib

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Popielec A, Loftsson T (2017) Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm 531:532–542

  2. Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996

  3. Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657

    Article  CAS  PubMed  Google Scholar 

  4. Heidel JD, Schluep T (2012) Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J Drug Deliv ID 262731:17

    Google Scholar 

  5. Arima H, Hayashi Y, Higashi T, Motoyama K (2015) Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 12:1425–1441

    Article  PubMed  Google Scholar 

  6. Giglio V, Oliveri V, Viale M, Gangemi R, Natile G, Intini FP, Vecchio G (2015) Folate–cyclodextrin conjugates as carriers of the platinum(IV) complex LA-12. ChemPlusChem 80:536–543

  7. Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781

    Article  CAS  PubMed  Google Scholar 

  8. Lakkakula JR, Maçedo Krause RW (2014) A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9:877–894

    Article  CAS  PubMed  Google Scholar 

  9. Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175

    Article  PubMed  Google Scholar 

  10. Vulic K, Shoichet MS (2014) Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules 15:3867–3880

  11. Jones RK, Caldwell JE, Brull SJ, Soto RG (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824

    Article  CAS  PubMed  Google Scholar 

  12. Gidwani B, Vyas AA (2015) Comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015. https://doi.org/10.1155/2015/198268

  13. Adeoye O, Cabral-Marques H (2017) Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharm doi: https://doi.org/10.1016/j.ijpharm.2017.04.050

  14. Avnesh S, Thakor MD, Sanjiv S, Gambhir MD (2013) Nanooncology: the future of cancer diagnosis and therapy. Cancer J Clin 63:395–418

    Article  Google Scholar 

  15. Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer-based nanoparticles. J Drug Deliv Sci Technol 22:215–222

  16. Oliveri V, Bellia F, Vecchio G (2017) Cyclodextrin nanoparticles bearing 8-hydroxyquinoline ligands as multifunctional biomaterials. Chem Eur J 23:442–4449

    Article  Google Scholar 

  17. Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601

    Article  CAS  PubMed  Google Scholar 

  18. Zhu W, Li Y, Liu L, Chen Y, Wang C, Xi F (2010) Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-Cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092

    Article  CAS  PubMed  Google Scholar 

  19. Oliveri V, Bellia F, Viale M, Maric I, Vecchio G (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 177:355–360

  20. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Yen Y, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. PNAS 113:3850–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu C-MJ, Fang RH, Luk BT, Zhang L (2014) Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nano 6:65–75

    CAS  Google Scholar 

  23. Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B 114:130–137

  24. Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671

    Article  CAS  Google Scholar 

  25. Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18:2079–2085

    Article  CAS  PubMed  Google Scholar 

  26. Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykac A, Ladaviere C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854

    Article  CAS  PubMed  Google Scholar 

  27. Folch-Cano C, Yazdani-Pedram M, Olea-Azar C (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079

    Article  PubMed  Google Scholar 

  28. Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49

    Article  CAS  PubMed  Google Scholar 

  29. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) 3:703–717

  30. Huillard O, Boissier E, Blanchet B, Thomas-Schoemann A, Cessot A, Boudou-Rouquette P, Durand JP, Coriat R, Giroux J, Alexandre J, Vidal M, Goldwasser F (2014) Drug safety evaluation of sorafenib for treatment of solid tumors: consequences for the risk assessment and management of cancer patients. Expert Opin Drug Saf 13:663–673

    Article  CAS  PubMed  Google Scholar 

  31. European Medicines Agency. Sorafenib—EPAR Scientific Discussion (2010)

  32. Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS (2015) Assessment of the amorphous “solubility” of a Group of Diverse Drugs Using new Experimental and Theoretical Approaches. Mol. Pharmaceutics 12:484–−495

    CAS  Google Scholar 

  33. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F (2016) Improving oral bioavailability of Sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm 13:599–608

    Article  CAS  PubMed  Google Scholar 

  34. Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A (2015) Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules 16:3784–3791

  35. Zhang N, Zhang B, Gong X, Wang T, Liu Y, Yang S (2016) In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine 11:2329–2343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, Francès C, Knebelmann B, Goldwasser F (2010) Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf 9:275–287

    Article  CAS  PubMed  Google Scholar 

  37. Yamaguchi T, Seki T, Miyasaka C, Inokuchi R, Kawamura R, Sakaguchi Y, Murata M, Matsuzaki K, Nakano Y, Uemura Y, Okazaki K (2015) Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: an autopsy case report. Oncol Lett 9:1633–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Hootegem A, Verslype C, Van Steenbergen W (2011) Sorafenib-induced liver failure: a case report and review of the Literature. Case Reports in Hepatology. http://dx.doi.org/10.1155/2011/941395

  39. Guo Y, Zhong T, Duan X-C, Zhang S, Yao X, Yin Y-F, Huang D, Ren W, Zhang Q, Zhang X (2017) Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv 24:270–277

    Article  CAS  PubMed  Google Scholar 

  40. Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466

    Article  CAS  Google Scholar 

  41. Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28

    Article  CAS  PubMed  Google Scholar 

  42. Oliveri V, Puglisi A, Viale M, Aiello C, Vecchio G, Clarke J, Milton J, Spencer J (2013) New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules. Chem Eur J 19:13946–13955

    Article  CAS  PubMed  Google Scholar 

  43. Mariggiò MA, Cafaggi S, Ottone M, Parodi B, Vannozzi MO, Parodi A, Mandys V, Viale M (2004) Inhibition of cell growth: induction of apoptosis and mechanism of action of the novel platinum compound cis-diaminechloro-[2-(diethylamino) ethyl 4- amino-benzoate, N4]-chloride platinum (II) monohydrochloride monohydrate. Invest New Drugs 22:3–16

  44. Layre AM, Gosselet NM, Renard E, Sebille B, Amiel C (2003) Comparison of the complexation of cosmetic and pharmaceutical compounds with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and water-soluble-β-cyclodextrin-co-epichlorohydrin polymers. J. Inclusion Phenomen Macrocyclic Chem 43:311–317

    Article  Google Scholar 

  45. Martin R, Sánchez I, Cao R, Rieumont J (2006) Solubility and kinetic release studies of naproxen and ibuprofen in soluble Epichlorohydrin-β-cyclodextrin polymer. Supramol Chem 18:627–631

    Article  CAS  Google Scholar 

  46. Fülöp Z, Nielsen TT, Larsen KL, Loftsson T (2013) Dextran-based cyclodextrin polymers: their solubilizing effect and self-association. Carbohydr Polym 97:635–642

    Article  PubMed  Google Scholar 

  47. Hashemi F, Tamaddon AM, Yousefi GH, Farvadi F (2012) Effect of pH on Solubilisation of Practically Insoluble Sorafenib by Classic and Stealth Polyamidoamine (PAMAM) Dendrimers and β–cyclodextrin. Proc NAP 1:02NNBM06

  48. Haxton KJ, Burt HM (2009) Polymeric drug delivery of platinum based anticancer agents. J Pharm Sci 98:2299–2316

    Article  CAS  PubMed  Google Scholar 

  49. Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, Santi P, Fenoglio C, Cafaggi S, Rocco M (2015) Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Invest New Drugs 33:1151–1161

Download references

Acknowledgements

The authors acknowledge the Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) and the Italian Ministero dell’Università e della Ricerca.

Funding

This study was funded by FIRB RINAME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Vecchio.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giglio, V., Viale, M., Bertone, V. et al. Cyclodextrin polymers as nanocarriers for sorafenib. Invest New Drugs 36, 370–379 (2018). https://doi.org/10.1007/s10637-017-0538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0538-9

Keywords

Navigation