Skip to main content
Log in

First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background Molecular chaperone targeting has shown promise as a therapeutic approach in human cancers of various histologies and genetic backgrounds. The purine-scaffold inhibitor PU-H71 (NSC 750424), selective for Hsp90 in epichaperome networks, has demonstrated antitumor activity in multiple preclinical cancer models. The present study was a first in-human trial of PU-H71 aimed at establishing its safety and tolerability and characterizing its pharmacokinetic (PK) profile on a weekly administration schedule in human subjects with solid tumors refractory to standard treatments. Methods PU-H71 was administered intravenously over 1 h on days 1 and 8 of 21-day cycles in patients with refractory solid tumors. Dose escalation followed a modified accelerated design. Blood and urine were collected during cycles 1 and 2 for pharmacokinetics analysis. Results Seventeen patients were enrolled in this trial. Grade 2 and 3 adverse events were observed but no dose limiting toxicities occurred, thus the human maximum tolerated dose was not determined. The mean terminal half-life (T1/2) was 8.4 ± 3.6 h, with no dependency to dose level. A pathway for the metabolic disposal of PU-H71 in humans was derived from microsome studies. Fourteen patients were also evaluable for clinical response; 6 (35%) achieved a best response of stable disease for >2 cycles, with 2 patients remaining on study for 6 cycles. The study closed prematurely due to discontinuation of drug supply. Conclusions PU-H71 was well tolerated at the doses administered during this study (10 to 470 mg/m2/day), with no dose limiting toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18

    Article  CAS  PubMed  Google Scholar 

  2. Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodina A, Wang T, Yan P, Gomes ED, Dunphy MP, Pillarsetty N, Koren J, Gerecitano JF, Taldone T, Zong H, Caldas-Lopes E, Alpaugh M, Corben A, Riolo M, Beattie B, Pressl C, Peter RI, Xu C, Trondl R, Patel HJ, Shimizu F, Bolaender A, Yang C, Panchal P, Farooq MF, Kishinevsky S, Modi S, Lin O, Chu F, Patil S, Erdjument-Bromage H, Zanzonico P, Hudis C, Studer L, Roboz GJ, Cesarman E, Cerchietti L, Levine R, Melnick A, Larson SM, Lewis JS, Guzman ML, Chiosis G (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  CAS  PubMed  Google Scholar 

  5. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  8. Jhaveri K, Ochiana SO, Dunphy MP, Gerecitano JF, Corben AD, Peter RI, Janjigian YY, Gomes-DaGama EM, Koren J 3rd, Modi S, Chiosis G (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  10. Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3:1530–1536

    Article  CAS  PubMed  Google Scholar 

  11. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy MM, Pick E, Kluger Y, Gould-Rothberg B, Lazova R, Camp RL, Rimm DL, Kluger HM (2008) HSP90 as a marker of progression in melanoma. Ann Oncol 19:590–594

    Article  CAS  PubMed  Google Scholar 

  13. Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3:301–323

    Article  CAS  PubMed  Google Scholar 

  14. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Usmani SZ, Bona R, Li Z (2009) 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 9:654–664

    Article  CAS  PubMed  Google Scholar 

  16. Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L, Trepel JB (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9:1479–1492

    Article  CAS  PubMed  Google Scholar 

  17. Kummar S, Gutierrez ME, Gardner ER, Chen X, Figg WD, Zajac-Kaye M, Chen M, Steinberg SM, Muir CA, Yancey MA, Horneffer YR, Juwara L, Melillo G, Ivy SP, Merino M, Neckers L, Steeg PS, Conley BA, Giaccone G, Doroshow JH, Murgo AJ (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer 46:340–347

    Article  CAS  PubMed  Google Scholar 

  18. Ramanathan RK, Egorin MJ, Erlichman C, Remick SC, Ramalingam SS, Naret C, Holleran JL, TenEyck CJ, Ivy SP, Belani CP (2010) Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J Clin Oncol 28:1520–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiosis G (2006) Discovery and development of purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 6:1183–1191

    Article  CAS  PubMed  Google Scholar 

  20. Immormino RM, Kang Y, Chiosis G, Gewirth DT (2006) Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem 49:4953–4960

    Article  CAS  PubMed  Google Scholar 

  21. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nayar U, Lu P, Goldstein RL, Vider J, Ballon G, Rodina A, Taldone T, Erdjument-Bromage H, Chomet M, Blasberg R, Melnick A, Cerchietti L, Chiosis G, Wang YL, Cesarman E (2013) Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood 122:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA, Mallik A, Robles AI, Walling J, Varticovski L, Shaknovich R, Bhalla KN, Chiosis G, Melnick A (2009) A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med 15:1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breinig M, Caldas-Lopes E, Goeppert B, Malz M, Rieker R, Bergmann F, Schirmacher P, Mayer M, Chiosis G, Kern MA (2009) Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma. Hepatology 50:102–112

    Article  CAS  PubMed  Google Scholar 

  25. Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, de Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J, Christian MC (1997) Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst 89:1138–1147

    Article  CAS  PubMed  Google Scholar 

  27. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  28. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    Article  CAS  PubMed  Google Scholar 

  29. Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang CH, Jiang Q, Xue LQ, Lovly CM, Jimenez JP, Shaw AT, Doebele RC, He SQ, Bates RC, Camidge DR, Morris SW, El-Hariry I, Proia DA (2013) Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 3:430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isaacs JS, Xu WP, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217

    Article  CAS  PubMed  Google Scholar 

  31. Trendowski M (2015) PU-H71: an improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol Res 99:202–216

    Article  CAS  PubMed  Google Scholar 

  32. Taldone T, Ochiana SO, Patel PD, Chiosis G (2014) Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 35:48–59

    Article  Google Scholar 

  33. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  CAS  PubMed  Google Scholar 

  34. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  35. Miyata Y (2005) Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des 11:1131–1138

    Article  CAS  PubMed  Google Scholar 

  36. Samuni Y, Ishii H, Hyodo F, Samuni U, Krishna MC, Goldstein S, Mitchell JB (2010) Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med 48:1559–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siegel D, Yan C, Ross D (2012) NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol 83:1033–1040

    Article  CAS  PubMed  Google Scholar 

  38. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216

    Article  CAS  PubMed  Google Scholar 

  40. Oh WK, Galsky MD, Stadler WM, Srinivas S, Chu F, Bubley G, Goddard J, Dunbar J, Ross RW (2011) Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology 78:626–630

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin TY, Bear M, Du ZJ, Foley KP, Ying WW, Barsoum J, London C (2008) The novel HSP90 inhibitor STA-9090 exhibits activity against kit-dependent and -independent malignant mast cell tumors. Exp Hematol 36:1266–1277

    Article  CAS  PubMed  Google Scholar 

  42. Goldman JW, Raju RN, Gordon GA, El-Hariry I, Teofilivici F, Vukovic VM, Bradley R, Karol MD, Chen Y, Guo W, Inoue T, Rosen LS (2013) A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer 13:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jhaveri K, Chandarlapaty S, Lake D, Gilewski T, Robson M, Goldfarb S, Drullinsky P, Sugarman S, Wasserheit-Leiblich C, Fasano J, Moynahan ME, D'Andrea G, Lim K, Reddington L, Haque S, Patil S, Bauman L, Vukovic V, El-Hariry I, Hudis C, Modi S (2014) A phase II open-label study of Ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer 14:154–160

    Article  CAS  PubMed  Google Scholar 

  44. Taldone T, Chiosis G (2009) Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 9:1436–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299

    Article  CAS  PubMed  Google Scholar 

  46. Chiosis G, Kang Y, Sun W (2008) Discovery and development of purine-scaffold Hsp90 inhibitors. Expert Opin Drug Discov 3:99–114

    Article  CAS  PubMed  Google Scholar 

  47. Gallerne C, Prola A, Lemaire C (2013) Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim Biophys Acta 1833:1356–1366

    Article  CAS  PubMed  Google Scholar 

  48. Qu Z, Wang S, Teng R, Yi X (2014) PU-H71 effectively induces degradation of IkappaB kinase beta in the presence of TNF-alpha. Mol Cell Biochem 386:135–142

    Article  CAS  PubMed  Google Scholar 

  49. Segawa T, Fujii Y, Tanaka A, Bando S, Okayasu R, Ohnishi K, Kubota N (2014) Radiosensitization of human lung cancer cells by the novel purine-scaffold Hsp90 inhibitor, PU-H71. Int J Mol Med 33:559–564

    Article  CAS  PubMed  Google Scholar 

  50. Taldone T, Zatorska D, Ochiana SO, Smith-Jones P, Koziorowski J, Dunphy MP, Zanzonico P, Bolaender A, Lewis JS, Larson SM, Chiosis G, Pillarsetty NVK (2016) Radiosynthesis of the iodine-124 labeled Hsp90 inhibitor PU-H71. J Labelled Comp Radiopharm 59:129–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerecitano JF, Modi S, Rampal R, Drilon AE, Fury MG, Gounder MM, Harding JJ, Hyman DM, Varghese AM, Voss MH, France FO, Taldone T, DaGama EG, Uddin M, Chiosis G, Lewis JS, Lyashchenko SK, Larson SM, Pressl C, Dunphy M (2015) Phase I trial of the HSP-90 inhibitor PU-H71. J Clin Oncol 33:2537–2537

    Article  Google Scholar 

Download references

Acknowledgements

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contracts No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The authors thank Dr. Mariam Konaté, Kelly Services, for editorial support in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaani Kummar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speranza, G., Anderson, L., Chen, A.P. et al. First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Invest New Drugs 36, 230–239 (2018). https://doi.org/10.1007/s10637-017-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0495-3

Keywords

Navigation