Skip to main content

Advertisement

Log in

Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Chemotherapeutic agents can induce accelerated senescence in tumor cells, an irreversible state of cell cycle arrest. Paclitaxel, a microtubule-stabilizing agent used to treat solid tumors of the breast, ovary, and lung and discodermolide, another stabilizing agent from a marine sponge, induce senescence in cultured cancer cells. The aim of this study was to determine if the microtubule-stabilizing agent peloruside A, a polyketide natural product from a marine sponge, can induce accelerated senescence in a breast cancer cell line MCF7. Doxorubicin, a DNA-damaging agent, paclitaxel, and discodermolide were used as positive controls. Senescence-associated-β-galactosidase activity was increased by peloruside A, similar to paclitaxel, discodermolde, and doxorubicin, with a potency heirarchy of doxorubicin > paclitaxel > discodermolide > peloruside, based on IC25 concentrations that inhibit proliferation. Clonogenic survival was significantly decreased by peloruside A, similar to doxorubicin and the two other microtubule-stabilizing agents. The tumor suppressor protein p53 increased after treatment, whereas pRb decreased in response to all four compounds. It was concluded that in addition to apoptosis, peloruside A causes accelerated senescence in a subpopulation of MCF7 cells that contributes to its potential anticancer activity in a breast cancer cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DDR:

DNA damage response

Disco:

Discodermolide

Doxo:

Doxorubicin

MSA:

Microtubule stabilizing agent

MTA:

Microtubule targeting agent

OIS:

Oncogene-induced senescence

PelA:

Peloruside A

Ptx:

Paclitaxel

SA-β-gal:

Senescence associated β-galactosidase

References

  1. Tait SW, Ichim G, Green DR (2014) Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 127:2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta Rev Cancer 1775:5–20

    Article  CAS  Google Scholar 

  3. Larsson LG (2011) Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  4. Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435–R444

    Article  CAS  PubMed  Google Scholar 

  5. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gire V, Dulić V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)- galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    CAS  PubMed  Google Scholar 

  8. Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957

    Article  CAS  PubMed  Google Scholar 

  9. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Schmitt CA, Reimann M (2011) The Myc/macrophage tango: oncogene-induced senescence, Myc style. Semin Cancer Biol 21:377–384

    Article  CAS  PubMed  Google Scholar 

  11. Orth JD, Loewer A, Lahav G, Migtchison TJ (2012) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang B-D, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  13. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumourbiology: senescence in premalignant tumours. Nature 436:642

    Article  CAS  PubMed  Google Scholar 

  14. Bianchi-Smiraglia A, Nikiforov MA (2012) Controversial aspects of oncogene-induced senescence. Cell Cycle 11:4147–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

  16. Klein LE, Freeze BS, Smith ABIII, Horwitz SB (2005) The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cellular senescence. Cell Cycle 4:501–507

    Article  CAS  PubMed  Google Scholar 

  17. Arthur CR, Gupton JT, Kellogg GE, Yeudall WA, Cabot MC, Newsham IF, Gewirtz DA (2007) Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison. Biochem Pharmacol 74:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tierno MB, Kitchens CA, Petrik B, Graham TH, Wipf P, Xu FL, Saunders WS, Raccor BS, Balachandran R, Day BW, Stout JR, Walczak CE, Ducruet AP, Reese CE, Lazo JS (2009) Microtubule binding and disruption and induction of premature senescence by disorazole C 1. J Pharm Exp Ther 328:715–722

    Article  CAS  Google Scholar 

  19. Roberson RS, Kussick SJ, Vallieres E, Chen SYJ, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803

    Article  CAS  PubMed  Google Scholar 

  20. Meyer CJ, Krauth M, Wick MJ, Shay JW, Gellert G, De Brabander JK, Northcote PT, Miller JH (2015) Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymic nu/nu mouse model. Mol Cancer Ther 14:1816–1823

  21. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  22. Galàn-Malo P, Vela L, Gonzalo O, Calvo-Sanjuàn R, Gracia-Fleta L, Naval J, Marzo I (2012) Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold. Toxicol Appl Pharmacol 258:384–393

    Article  PubMed  Google Scholar 

  23. Litwiniec A, Grzanka A, Helmin-Basa A, Gackowska L, Grzanka D (2010) Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J Cancer Res Clin Oncol 136:717–736

    Article  CAS  PubMed  Google Scholar 

  24. Hood KA, Bäckström BT, West LM, Northcote PT, Berridge MV, Miller JH (2001) The novel cytotoxic sponge metabolite peloruside A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anticancer Drug Des 16:155–166

  25. Hood KA, West LM, Rouwé B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule stabilizing activity. Cancer Res 62:3356–3360

  26. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  CAS  PubMed  Google Scholar 

  27. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho S, Hwang ES (2012) Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cell 33:597–604

    Article  CAS  Google Scholar 

  29. Russo J, Furmanski P, Bradley R (1976) Differentiation of normal human mammary epithelial cells in culture: an ultrastructural study. Am J Anat 145:57–77

    Article  CAS  PubMed  Google Scholar 

  30. Pfaller W, Gstraunthaler G, Loidl P (1990) Morphology of the differentiation and maturation of LLC-PK1 epithelia. J Cell Physiol 142:247–254

    Article  CAS  PubMed  Google Scholar 

  31. Bar-On O, Shapira M, Hershko DD (2007) Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells. Anti-Cancer Drugs 18:1113–1121

    Article  CAS  PubMed  Google Scholar 

  32. Vogel C, Kienitz A, Hofmann I, Müller R, Bastians H (2004) Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23:6845–6853

    Article  CAS  PubMed  Google Scholar 

  33. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–4818

    Article  CAS  PubMed  Google Scholar 

  34. Balachandran R, ter Haar E, Welsh MJ, Grant SG, Day BW (1998) The potent microtubule-stabilizing agent (+)-discodermolide induces apoptosis in human breast carcinoma cells--preliminary comparisons to paclitaxel. Anti-Cancer Drugs 9:67–76

    Article  CAS  PubMed  Google Scholar 

  35. Leontieva OV, Gudkov AV, Blagosklonny MV (2010) Weak p53 permits senescence during cell cycle arrest. Cell Cycle 9:4323–4327

    Article  CAS  PubMed  Google Scholar 

  36. Terzi MY, Izmirli M, Gogebakan B (2016) The cell fate: senescence or quiescence. Mol Biol Rep 43:1213–1220

    Article  CAS  PubMed  Google Scholar 

  37. Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14:111–122

    Article  CAS  PubMed  Google Scholar 

  38. Gascoigne KE, Taylor SS (2009) How do anti-mitotic drugs kill cancer cells? J Cell Sci 122:2579–2585

    Article  CAS  PubMed  Google Scholar 

  39. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    Article  CAS  PubMed  Google Scholar 

  40. Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, Kim WH, Yoon G, Choi KS (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777

    Article  CAS  PubMed  Google Scholar 

  41. Kottke TJ, Blajeski AL, Meng XW, Svingen PA, Ruchaud S, Mesner PW Jr, Boerner SA, Samejima K, Henriquez NV, Chilcote TJ, Lord J, Salmon M, Earnshaw WC, Kaufmann SH (2002) Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J Biol Chem 277:804–815

    Article  CAS  PubMed  Google Scholar 

  42. Nestal de Moraes G, Vasconcelos FC, Delbue D, Mognol GP, Sternberg C, Viola JP, Maia RC (2013) Doxorubicin induces cell death in breast cancer cells regardless of Survivin and XIAP expression levels. Eur J Cell Biol 92:247–256

    Article  CAS  PubMed  Google Scholar 

  43. Zhou BBS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

  44. Dhawan V, Swaffar D (1999) A unique paclitaxel-mediated modulation of the catalytic activity of topoisomerase IIα. Anti-Cancer Drugs 10:397–404

    Article  CAS  PubMed  Google Scholar 

  45. Chang J-Y, Hsieh H-P, Pan W-Y, Liou J-P, Bey S-J, Chen L-T, Liu J-F, Song J-S (2003) Dual inhibition of topoisomerase I and tubulin polymerization by BPR0Y007, a novel cytotoxic agent. Biochem Pharmacol 65:2009–2019

    Article  CAS  PubMed  Google Scholar 

  46. Wilmes A, Hanna R, Heathcott RW, Northcote PT, Atkinson PH, Bellows DS, Miller JH (2012) Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae. Gene 497:140–146

  47. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  CAS  PubMed  Google Scholar 

  48. West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Organomet Chem 65:445–449

  49. Paterson I, Florence GJ, Gerlach K, Scott JP (2000) Total synthesis of the antimicrotubule agent (+)-discodermolide using boron-mediated aldol reactions of chiral ketones. Angew Chem Int Ed Eng 39:377–380

    Article  CAS  Google Scholar 

  50. Hood KA, West LM, Northcote PT, Berridge MV, Miller JH (2001) Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis 6:207–219

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C. and J.H.M. conceived and designed the experiments; A.C. performed the experiments; A.C. analyzed the data with assistance from J.H.M., C.G. and N.T.; P.T.N. provided the peloruside A; I.P. provided the discodermolide; A.C. and J.H.M. initially wrote the paper; C.G., N.T., P.T.N. and I.P. contributed to the editing and critical evaluation of the manuscript.

Corresponding author

Correspondence to John H. Miller.

Ethics declarations

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Peter Northcote and John Miller are named on a 2004 US patent for development of peloruside A as an anticancer agent. Ariane Chan, Connie Gilfillan, Nikki Templeton, and Ian Paterson declare that they have no conflict of interest.

Funding

This research was supported by grant E1807 from the Cancer Society of New Zealand to JHM, PTN, and AC, grant E1707 from the Wellington Medical Research Foundation to JHM and PTN, and grant UGC-204067 from Victoria University of Wellington to JHM and PTN. AC was the recipient of PhD Scholarship E1802 from the Genesis Oncology Trust of New Zealand.

Electronic supplementary material

ESM 1

(DOCX 13519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A., Gilfillan, C., Templeton, N. et al. Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Invest New Drugs 35, 706–717 (2017). https://doi.org/10.1007/s10637-017-0493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0493-5

Keywords

Navigation