Skip to main content

Advertisement

Log in

Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC0→∞ 38% in plasma (p < 0.05) and 24% in liver (p < 0.001) and 23% in kidney (p < 0.001). However, AUC0→∞ remained unchanged in plasma and increased 41% in kidney (p < 0.001) of female mice. In brain, sunitinib exposure decreased 46% (p < 0.001) and 32% (p < 0.001) in male and female brain respectively. Mechanistically, diclofenac increased the liver uptake efficiency in male (27%, p < 0.05) and female (48%, p < 0.001) mice and 30% in kidney (p < 0.05) of male mice, probably owing to effects on efflux transporters. Sunitinib displayed sex-divergent DDI with diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Leeuwen RWF, Jansman FGA, van den Bemt PMLA et al (2015) Drug-drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann Oncol 26:992-997. doi:10.1093/annonc/mdv029

    Article  PubMed  Google Scholar 

  2. Bowlin SJ, Xia F, Wang W et al (2013) Twelve-month frequency of drug-metabolizing enzyme and transporter-based drug-drug interaction potential in patients receiving oral enzyme-targeted kinase inhibitor antineoplastic agents. Mayo Clin Proc 88:139-148. doi:10.1016/j.mayocp.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  3. TW Leblanc (2015) Polypharmacy in patients with advanced cancer and the role of medication discontinuation. Lancet Oncol 16:e333-e341. doi:10.1016/S1470-2045(15)00080-7

    Article  Google Scholar 

  4. Silva FD, Thomas-Schoemann A, Huillard O et al (2016) Benefit of therapeutic drug monitoring to disclose pharmacokinetic interaction between sunitinib and calcium channel blocker. Ann Oncol 27:1651-1652. doi:10.1093/annonc/mdw182

    Article  PubMed  Google Scholar 

  5. Liewer S, Huddleston AN (2015) Oral targeted therapies: managing drug interactions, enhancing adherence and optimizing medication safety in lymphoma patients. Expert Rev Anticancer Ther 15:453-464. doi:10.1586/14737140.2015.1014807

    Article  CAS  PubMed  Google Scholar 

  6. Mercadante S (2015) Breakthrough pain in cancer patients: prevalence, mechanisms and treatment options. Curr Opin Anaesthesiol 28:559-564. doi:10.1097/ACO.0000000000000224

    Article  CAS  PubMed  Google Scholar 

  7. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25-35. doi:10.1200/JCO.2005.02.2194

    Article  CAS  PubMed  Google Scholar 

  8. van Erp NP, Gelderblom H, Guchelaar H-J (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692-706. doi:10.1016/j.ctrv.2009.08.004

    Article  PubMed  Google Scholar 

  9. Motzer RJ, Escudier B, Gannon A, Figlin RA (2017) Sunitinib: Ten Years of Successful Clinical Use and Study in Advanced Renal Cell Carcinoma. Oncologist 22:41-52. doi:10.1634/theoncologist.2016-0197

    Article  CAS  PubMed  Google Scholar 

  10. Gore ME, Szczylik C, Porta C et al (2015) Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Br J Cancer 113:12-19. doi:10.1038/bjc.2015.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lombardi G, Di Stefano AL, Farina P et al (2014) Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: An overview of the literature. Cancer Treat Rev 40:951-959. doi:10.1016/j.ctrv.2014.05.007

    Article  PubMed  Google Scholar 

  12. Hatipoglu G, Hock SW, Weiss R et al (2015) Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment. Cancer Sci 106:160-170. doi:10.1111/cas.12580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeuchi H, Koike H, Fujita T et al (2014) Sunitinib treatment for multiple brain metastases from jejunal gastrointestinal stromal tumor: case report. Neurol Med Chir 54:664-669

    Article  Google Scholar 

  14. Gore ME, Hariharan S, Porta C et al (2011) Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 117:501-509. doi:10.1002/cncr.25452

    Article  CAS  PubMed  Google Scholar 

  15. Faivre S, Niccoli P, Castellano D et al (2016) Sunitinib in pancreatic neuroendocrine tumors: updated progression free survival and final overall survival from a phase III randomized study. Ann Oncol. doi:10.1093/annonc/mdw561

    PubMed  PubMed Central  Google Scholar 

  16. Zimmerman EI, Hu S, Roberts JL et al (2013) Contribution of OATP1B1 and OATP1B3 to the Disposition of Sorafenib and Sorafenib-Glucuronide. Clin Cancer Res 19:1458-1466. doi:10.1158/1078-0432.CCR-12-3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shukla S, Robey RW, Bates SE, Ambudkar SV (2008) Sunitinib (Sutent, SU11248), a Small-Molecule Receptor Tyrosine Kinase Inhibitor, Blocks Function of the ATP-Binding Cassette (ABC) Transporters P-Glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37:359-365. doi:10.1124/dmd.108.024612

    Article  PubMed  PubMed Central  Google Scholar 

  18. Domagała-Haduch M, Cedrych I, Jasiówka M et al (2016) Analysis of adverse events of sunitinib in patients treated for advanced renal cell carcinoma. Arch Med Sci 2:360-364. doi:10.5114/aoms.2016.59262

    Article  Google Scholar 

  19. Karczmarek-Borowska B, Salek-Zan A (2015) Hepatotoxicity of molecular targeted therapy. Wspólczesna Onkol 19:87-92. doi:10.5114/wo.2014.43495

    Article  Google Scholar 

  20. Guillen SS, Meijer M, de Jongh FE (2016) Lethal acute liver failure in a patient treated with sunitinib. BMJ Case Rep. doi:10.1136/bcr-2015-213624

    PubMed  Google Scholar 

  21. Segarra I, Modamio P, Fernández C, Mariño EL (2016) Sunitinib Possible Sex-Divergent Therapeutic Outcomes. Clin Drug Investig 36:791-799. doi:10.1007/s40261-016-0428-5

    Article  CAS  PubMed  Google Scholar 

  22. Chee EL-C, Lim AYL, Modamio P et al (2015) Sunitinib tissue distribution changes after coadministration with ketoconazole in mice. Eur J Drug Metab Pharmacokinet 41:309-319. doi:10.1007/s13318-015-0264-7

    Article  PubMed  Google Scholar 

  23. Tan SY, Wong MM, Tiew ALW et al (2016) Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice. Cancer Chemother Pharmacol 78:709-718. doi:10.1007/s00280-016-3120-9

    Article  CAS  PubMed  Google Scholar 

  24. Lau CLL, Chan ST, Selvaratanam M et al (2015) Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently. Fundam Clin Pharmacol 29:404-416. doi:10.1111/fcp.12126

    Article  CAS  PubMed  Google Scholar 

  25. Liew MH, Ng S, Chew CC et al (2017) Sunitinib-paracetamol sex-divergent pharmacokinetics and tissue distribution drug-drug interaction in mice. Investig New Drugs:1-13. doi:10.1007/s10637-016-0415-y

  26. Bilbao-Meseguer I, Jose BS, Lopez-Gimenez LR et al (2015) Drug interactions with sunitinib. J Oncol Pharm Pract 21:52-66. doi:10.1177/1078155213516158

    Article  PubMed  Google Scholar 

  27. Weise AM, Liu CY, Shields AF (2009) Fatal liver failure in a patient on acetaminophen treated with sunitinib malate and levothyroxine. Ann Pharmacother 43:761-766. doi:10.1345/aph.1L528

    Article  CAS  PubMed  Google Scholar 

  28. Lim AYL, Segarra I, Chakravarthi S et al (2010) Histopathology and biochemistry analysis of the interaction between sunitinib and paracetamol in mice. BMC Pharmacol 10:14. doi:10.1186/1471-2210-10-14

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tan JR, Chakravarthi S, Judson JP et al (2013) Potential protective effect of sunitinib after administration of diclofenac: biochemical and histopathological drug-drug interaction assessment in a mouse model. Naunyn Schmiedeberg's Arch Pharmacol 386:619-633. doi:10.1007/s00210-013-0861-4

    Article  CAS  Google Scholar 

  30. Schmetzer O, Flörcken A (2012) Sex differences in the drug therapy for oncologic diseases. Handb Exp Pharmacol 214:411-442. doi:10.1007/978-3-642-30726-3_19

    Article  CAS  Google Scholar 

  31. Sun T, Plutynski A, Ward S, Rubin JB (2015) An integrative view on sex differences in brain tumors. Cell Mol Life Sci 72:3323-3342. doi:10.1007/s00018-015-1930-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui YJ, Cheng X, Weaver YM, Klaassen CD (2009) Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 37:203-210. doi:10.1124/dmd.108.023721

    Article  CAS  PubMed  Google Scholar 

  33. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76:215-228. doi:10.1124/mol.109.056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shitara Y, Maeda K, Ikejiri K et al (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34:45-78. doi:10.1002/bdd.1823

    Article  CAS  PubMed  Google Scholar 

  35. Patrignani P, Patrono C (2015) Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim Biophys Acta 1851:422-432. doi:10.1016/j.bbalip.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  36. Sarda S, Page C, Pickup K et al (2012) Diclofenac metabolism in the mouse: novel in vivo metabolites identified by high performance liquid chromatography coupled to linear ion trap mass spectrometry. Xenobiotica 42:179-194. doi:10.3109/00498254.2011.607865

    Article  CAS  PubMed  Google Scholar 

  37. Kindla J, Müller F, Mieth M et al (2011) Influence of non-steroidal anti-inflammatory drugs on organic anion transporting polypeptide (OATP) 1B1- and OATP1B3-mediated drug transport. Drug Metab Dispos 39:1047-1053. doi:10.1124/dmd.110.037622

    Article  CAS  PubMed  Google Scholar 

  38. El-Sheikh AAK, Masereeuw R, Russel FGM (2008) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245-255. doi:10.1016/j.ejphar.2008.02.085

    Article  CAS  PubMed  Google Scholar 

  39. Bailer AJ (1988) Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16:303-309

    Article  CAS  PubMed  Google Scholar 

  40. Yuan J (1993) Estimation of variance for AUC in animal studies. J Pharm Sci 82:761-763

    Article  CAS  PubMed  Google Scholar 

  41. Soo GW, Law JHK, Kan E et al (2010) Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice. Anti-Cancer Drugs 21:695-703

    CAS  PubMed  Google Scholar 

  42. Tan SY, Kan E, Lim WY et al (2011) Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 63:918-925. doi:10.1111/j.2042-7158.2011.01296.x

    Article  CAS  PubMed  Google Scholar 

  43. Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain. J Pharmacol Exp Ther 347:755-764. doi:10.1124/jpet.113.208959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nassar I, Pasupati T, Judson JP, Segarra I (2010) Histopathological study of the hepatic and renal toxicity associated with the co-administration of imatinib and acetaminophen in a preclinical mouse model. Malays J Pathol 32:1-11

    PubMed  Google Scholar 

  45. Nassar I, Pasupati T, Judson JP, Segarra I (2009) Reduced exposure of imatinib after coadministration with acetaminophen in mice. Indian J Pharm 41:167-172. doi:10.4103/0253-7613.56071

    Article  CAS  Google Scholar 

  46. Chew WK, Segarra I, Ambu S, Mak JW (2012) Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 56:1762-1768. doi:10.1128/AAC.05183-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakuma T, Kawasaki Y, Jarukamjorn K, Nemoto N (2009) Sex differences of drug-metabolizing enzyme: Female predominant expression of human and mouse cytochrome P450 3A isoforms. J Health Sci 55:325-337

    Article  CAS  Google Scholar 

  48. Maher JM, Slitt AL, Cherrington NJ et al (2005) Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos 33:947-955. doi:10.1124/dmd.105.003780

    Article  CAS  PubMed  Google Scholar 

  49. Merino G, van Herwaarden AE, Wagenaar E et al (2005) Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 67:1765-1771. doi:10.1124/mol.105.011080

    Article  CAS  PubMed  Google Scholar 

  50. Prager EM (2017) Addressing sex as a biological variable. J Neurosci Res 95:11. doi:10.1002/jnr.23979

    Article  CAS  PubMed  Google Scholar 

  51. Cahill L (2017) An issue whose time has come. J Neurosci Res 95:12-13. doi:10.1002/jnr.23972

    Article  CAS  PubMed  Google Scholar 

  52. Masubuchi Y, Ose A, Horie T (2002) Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab Dispos 30:1143-1148

    Article  CAS  PubMed  Google Scholar 

  53. Ohyama K, Murayama N, Shimizu M, Yamazaki H (2014) Drug interactions of diclofenac and its oxidative metabolite with human liver microsomal cytochrome P450 1A2-dependent drug oxidation. Xenobiotica 44:10-16. doi:10.3109/00498254.2013.806837

    Article  CAS  PubMed  Google Scholar 

  54. Boelsterli UA (2003) Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 192:307-322

    Article  CAS  PubMed  Google Scholar 

  55. Jemnitz K, Heredi-Szabo K, Janossy J et al (2010) ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 42:402-436. doi:10.3109/03602530903491741

    Article  CAS  PubMed  Google Scholar 

  56. El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229-235. doi:10.1124/jpet.106.110379

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Hughes TP, Kok CH et al (2012) Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells. Br J Cancer 106:1772-1778. doi:10.1038/bjc.2012.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lagas JS, van der Kruijssen CMM, van de Wetering K et al (2009) Transport of Diclofenac by Breast Cancer Resistance Protein (ABCG2) and Stimulation of Multidrug Resistance Protein 2 (ABCC2)-Mediated Drug Transport by Diclofenac and Benzbromarone. Drug Metab Dispos 37:129-136. doi:10.1124/dmd.108.023200

    Article  CAS  PubMed  Google Scholar 

  59. McGill MR, Jaeschke H (2013) Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharm Res 30:2174-2187. doi:10.1007/s11095-013-1007-6

  60. Takara K, Hayashi R, Kokufu M et al (2009) Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-glycoprotein/MDR1 in Caco-2 cells. Drug Chem Toxicol 32:332-337. doi:10.1080/01480540903130658

    Article  CAS  PubMed  Google Scholar 

  61. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260-1287. doi:10.1111/j.1476-5381.2011.01724.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou W-Y, Xu S-F, Zhu Q-N et al (2014) Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicol Appl Pharmacol 280:370-377. doi:10.1016/j.taap.2014.08.020

    Article  CAS  PubMed  Google Scholar 

  63. Tang SC, Lagas JS, Lankheet NAG et al (2012) Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 130:223-233. doi:10.1002/ijc.26000

    Article  CAS  PubMed  Google Scholar 

  64. Juhász V, Beéry E, Nagy Z et al (2013) Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J Pharm Sci 102:1683-1687. doi:10.1002/jps.23491

    Article  PubMed  Google Scholar 

  65. Narjoz C, Cessot A, Thomas-Schoemann A et al (2015) Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Investig New Drugs 33:257-268. doi:10.1007/s10637-014-0178-2

    Article  CAS  Google Scholar 

  66. van der Veldt AAM, Boven E, Helgason HH et al (2008) Predictive factors for severe toxicity of sunitinib in unselected patients with advanced renal cell cancer. Br J Cancer 99:259-265. doi:10.1038/sj.bjc.6604456

    Article  PubMed  PubMed Central  Google Scholar 

  67. Akaza H, Naito S, Ueno N et al (2015) Real-world use of sunitinib in Japanese patients with advanced renal cell carcinoma: efficacy, safety and biomarker analyses in 1689 consecutive patients. Jpn J Clin Oncol 45:576-583. doi:10.1093/jjco/hyv045

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bamias A, Tzannis K, Beuselinck B et al (2013) Development and validation of a prognostic model in patients with metastatic renal cell carcinoma treated with sunitinib: a European collaboration. Br J Cancer 109:332-341. doi:10.1038/bjc.2013.341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lankheet NAG, Kloth JSL, Gadellaa-van Hooijdonk CGM et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441-2449. doi:10.1038/bjc.2014.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Voss MH, Chen D, Marker M et al (2016) Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma. Br J Cancer 114:642-649. doi:10.1038/bjc.2016.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. A. Saik and Ms. N. Marham for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Segarra.

Ethics declarations

Conflict of interest

Author CCC declares that she has no conflict of interest. Author SN declares that she has no conflict of interest. Author YLC declares that she has no conflict of interest. Author TWK declares that she has no conflict of interest. Author MHL declares that she has no conflict of interest. Author ELCC declares that she has no conflict of interest. Author PM declares that she has no conflict of interest. Author CF declares that she has no conflict of interest. Author ELM declares that he has no conflict of interest. Author IS declares that he has no conflict of interest.

Funding

This research was funded by the International Medical University with grant B1/06-Res(08)2009.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, C.C., Ng, S., Chee, Y.L. et al. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice. Invest New Drugs 35, 399–411 (2017). https://doi.org/10.1007/s10637-017-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0447-y

Keywords

Navigation