Investigational New Drugs

, Volume 35, Issue 2, pp 235–241 | Cite as

Phase II study of the antibody-drug conjugate TAK-264 (MLN0264) in patients with metastatic or recurrent adenocarcinoma of the stomach or gastroesophageal junction expressing guanylyl cyclase C

  • Khaldoun AlmhannaEmail author
  • Maria Luisa Limon Miron
  • David Wright
  • Antonio Cubillo Gracian
  • Richard A. Hubner
  • Jean-Luc Van Laethem
  • Carolina Muriel López
  • Maria Alsina
  • Frederico Longo Muñoz
  • Johanna Bendell
  • Irfan Firdaus
  • Wells Messersmith
  • Zhan Ye
  • Adedigbo A. Fasanmade
  • Hadi Danaee
  • Thea Kalebic


Background The first-in-class antibody–drug conjugate TAK-264 (formerly MLN0264) consists of an antibody targeting guanylyl cyclase C (GCC) conjugated to monomethyl auristatin E (MMAE) via a peptide linker. This phase II study evaluated the efficacy and safety of TAK-264 in patients with adenocarcinoma of the stomach or gastroesophageal junction expressing GCC, who had progressed on ≥1 line of prior therapy. Methods This study used a two-stage design, with an interim analysis conducted after stage I to determine whether to continue to stage II or discontinue on the grounds of futility. Adult patients with gastric and gastroesophageal junction adenocarcinoma expressing low, intermediate, or high GCC levels received TAK-264 1.8 mg/kg as a 30-min intravenous infusion once every 21 days, for up to 1 year. The primary endpoint was objective response rate. Radiographic assessments of tumor burden were performed every 2 cycles (6 weeks). Results A total of 38 patients participated in the study. Patients received a median of 2 (range 1–14) cycles; 8 (21%) received at least 6 cycles. The most common adverse events were nausea (53%), fatigue (32%), and decreased appetite (29%). Grade ≥3 events including anemia, diarrhea, and neutropenia were seen in 14 (37%) patients. Systemic exposure to TAK-264 was maintained throughout each treatment cycle. Two patients (6%) with intermediate GCC expression had objective responses. Conclusions TAK-264 demonstrated a manageable safety profile in this patient population. The stage I interim analysis did not support continuation to stage II of the study.


Guanylyl cyclase C Antibody–drug conjugate TAK-264 Gastrointestinal cancer 



The authors acknowledge JungAh Jung and Timothy Wyant for statistical and translational input. The authors also acknowledge Yosef Mansour and Tamara Bailey of FireKite, an Ashfield company, part of UDG Healthcare plc, for writing support during the development of this manuscript.

Author contributions

All authors contributed to the study design, conduct or collection, the writing and reviewing of the manuscript, and approved the final manuscript for submission.

Compliance with ethical standards

Conflict of interest

Disclosures are as follows. Khaldoun Almhanna: Lilly advisor/board member, Genentech speaker’s bureau. Richard A. Hubner: Eli Lilly advisory board member. Wells Messersmith: Research support from Millennium. Zhan Ye, Adedigbo A. Fasanmade, Hadi Danaee and Thea Kalebic: full-time employees of Millennium. Maria Luisa Limon Miron, David Wright, Antonio Cubillo Gracian, Jean-Luc Van Laethem, Carolina Muriel López, Maria Alsina, Frederico Longo Muñoz, Johanna Bendell, and Irfan Firdaus: nothing to disclose.

Ethical approval

This study was conducted according to the principles set out in the Declaration of Helsinki, in compliance with International Conference on Harmonisation, Good Clinical Practice guidelines, and local regulatory requirements. Institutional review boards/ethics committees at the participating investigational centers approved the study.

Informed consent

Written informed consent was obtained from all individual patients included in the study.


This study was funded by Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

Supplementary material

10637_2017_439_MOESM1_ESM.pdf (805 kb)
Supplementary Fig. S1 The 600 H-score is based on the sum of the 0–300 H-score for cytoplasmic staining and the 0–300 H-score for apical staining in order to capture both the apical (black) and cytoplasmic (white) localization of GCC-positive staining (PDF 805 kb)


  1. 1.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  2. 2.
    Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2095–2128. doi: 10.1016/S0140-6736(12)61728-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Yazici O, Sendur MA, Ozdemir N, Aksoy S (2016) Targeted therapies in gastric cancer and future perspectives. World J Gastroenterol 22(2):471–489. doi: 10.3748/wjg.v22.i2.471 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fuchs CS, Tomasek J, Yong CJ et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39CrossRefPubMedGoogle Scholar
  5. 5.
    Wilke H, Muro K, Van Cutsem E et al (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15(11):1224–1235. doi: 10.1016/S1470-2045(14)70420-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6(1):34–45. doi: 10.4161/mabs.27022 CrossRefPubMedGoogle Scholar
  7. 7.
    Peters C, Brown S (2015) Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 35(4) doi: 10.1042/bsr20150089
  8. 8.
    Teicher BA, Chari RVJ (2011) Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 17(20):6389–6397. doi: 10.1158/1078-0432.ccr-11-1417 CrossRefPubMedGoogle Scholar
  9. 9.
    Li P, Schulz S, Bombonati A et al (2007) Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology 133(2):599–607. doi: 10.1053/j.gastro.2007.05.052 CrossRefPubMedGoogle Scholar
  10. 10.
    Vaandrager AB (2002) Structure and function of the heat-stable enterotoxin receptor/guanylyl cyclase C. Mol Cell Biochem 230(1–2):73–83CrossRefPubMedGoogle Scholar
  11. 11.
    Almhanna K, Kalebic T, Cruz C et al (2016) Phase I study of the investigational anti-guanylyl cyclase antibody-drug conjugate TAK-264 (MLN0264) in adult patients with advanced gastrointestinal malignancies. Clin Cancer Res. doi: 10.1158/1078-0432.ccr-15-2474 PubMedGoogle Scholar
  12. 12.
    Almhanna K, Prithviraj GK, Veiby P, Kalebic T (2016) Antibody-drug conjugate directed against the guanylyl cyclase antigen for the treatment of gastrointestinal malignancies. Pharmacol Ther. doi: 10.1016/j.pharmthera.2016.10.007 PubMedGoogle Scholar
  13. 13.
    Mao ZB, Zhang JF, Xu Z et al (2009) Ectopic expression of guanylyl cyclase C in gastric cancer as a potential biomarker and therapeutic target. J Dig Dis 10(4):272–285. doi: 10.1111/j.1751-2980.2009.00396.x CrossRefPubMedGoogle Scholar
  14. 14.
    Carrithers SL, Parkinson SJ, Goldstein SD et al (1996) Escherichia coli Heat-stable enterotoxin receptors. A novel marker for colorectal tumors. Dis Colon Rectum 39(2):171–181CrossRefPubMedGoogle Scholar
  15. 15.
    Wolfe HR, Mendizabal M, Lleong E et al (2002) In vivo imaging of human colon cancer xenografts in immunodeficient mice using a guanylyl cyclase C--specific ligand. J Nucl Med 43(3):392–399PubMedGoogle Scholar
  16. 16.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi: 10.1016/j.ejca.2008.10.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Fanale D, Bronte G, Passiglia F et al (2015) Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015:19. doi: 10.1155/2015/690916 CrossRefGoogle Scholar
  18. 18.
    Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31(3):443–481. doi: 10.1002/med.20242 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821. doi: 10.1056/NEJMoa1002965 CrossRefPubMedGoogle Scholar
  20. 20.
    Diamantis N, Banerji U (2016) Antibody-drug conjugates— an emerging class of cancer treatment. Br J Cancer 114(4):362–367. doi: 10.1038/bjc.2015.435 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS Journal 17(2):339–351. doi: 10.1208/s12248-014-9710-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Smaglo BG, Aldeghaither D, Weiner LM (2014) The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol 11(11):637–648. doi: 10.1038/nrclinonc.2014.159 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15(6):361–370. doi: 10.1038/nrc3930 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Khaldoun Almhanna
    • 1
    Email author
  • Maria Luisa Limon Miron
    • 2
  • David Wright
    • 3
  • Antonio Cubillo Gracian
    • 4
  • Richard A. Hubner
    • 5
  • Jean-Luc Van Laethem
    • 6
  • Carolina Muriel López
    • 7
  • Maria Alsina
    • 8
  • Frederico Longo Muñoz
    • 9
  • Johanna Bendell
    • 10
  • Irfan Firdaus
    • 11
  • Wells Messersmith
    • 12
  • Zhan Ye
    • 13
  • Adedigbo A. Fasanmade
    • 13
  • Hadi Danaee
    • 13
  • Thea Kalebic
    • 13
  1. 1.Department of Gastrointestinal OncologyMoffitt Cancer CenterTampaUSA
  2. 2.Hospital Universitario Virgen del RocioSevilleSpain
  3. 3.Florida Cancer SpecialistsTampaUSA
  4. 4.HM Universitario Sanchinarro, CIOCCMadridSpain
  5. 5.The Christie NHS Foundation TrustManchesterUK
  6. 6.Erasme University HospitalBrusselsBelgium
  7. 7.Hospital Universitario Virgen de la VictoriaMálagaSpain
  8. 8.Vall d’Hebron University Hospital and VHIO-Vall d’Hebron Institute of OncologyBarcelonaSpain
  9. 9.Ramon y Cajal University HospitalMadridSpain
  10. 10.Sarah Cannon Research Institute/Tennessee OncologyNashvilleUSA
  11. 11.The Christ Hospital PhysiciansCincinnatiUSA
  12. 12.University of ColoradoDenverUSA
  13. 13.Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company LimitedCambridgeUSA

Personalised recommendations