Investigational New Drugs

, Volume 35, Issue 2, pp 145–157 | Cite as

Sunitinib-paracetamol sex-divergent pharmacokinetics and tissue distribution drug-drug interaction in mice

  • Ming Hui Liew
  • Salby Ng
  • Chii Chii Chew
  • Teng Wai Koo
  • Yun Lee Chee
  • Evelyn Li-Ching Chee
  • Pilar Modamio
  • Cecilia Fernández
  • Eduardo L. Mariño
  • Ignacio SegarraEmail author


The sex-divergent pharmacokinetics and interaction of tyrosine kinase inhibitor sunitinib with paracetamol was evaluated in male and female mice. Mice (control groups) were administered 60 mg/kg PO sunitinib alone or with 200 mg/kg PO paracetamol (study groups). Sunitinib concentration in plasma, brain, kidney and liver were determined and non-compartmental pharmacokinetic analysis performed. Female control mice showed 36% higher plasma sunitinib AUC0→∞, 31% and 27% lower liver and kidney AUC0→∞ and 2.2-fold higher AUC0→∞ in brain (all p < 0.001) and had lower liver- and kidney-to-plasma AUC0→∞ ratios (p < 0.001) than male control mice. Paracetamol decreased 29% plasma AUC0→∞ (p < 0.05) in male mice and remained unchanged in female mice. In male and female mice, it decreased liver (15%, 9%), kidney (15%, 20%) and brain (47%, 50%) AUC0→∞ (p < 0.001) respectively owing to 52% brain uptake efficiency reduction in female mice (p < 0.01). Sunitinib displayed sex-divergent pharmacokinetics, tissue distribution and DDI with potential clinical translatability for the treatment of brain tumor and RCC patients.


Sunitinib Paracetamol Sex-divergent pharmacokinetics Drug-drug interaction Blood-brain barrier Brain tumor 



The authors thank Ms. A. Saik and Ms. N. Marham for their assistance.

Compliance with ethical standards

Conflict of interest

Author MHL declares that she has no conflict of interest. Author SN declares that she has no conflict of interest. Author CCC declares that she has no conflict of interest. Author TWK declares that she has no conflict of interest. Author YLC declares that she has no conflict of interest. Author ELCC declares that she has no conflict of interest. Author PM declares that she has no conflict of interest. Author CF declares that she has no conflict of interest. Author ELM declares that he has no conflict of interest. Author IS declares that he has no conflict of interest.


The work was supported by the International Medical University (IMU), Kuala Lumpur, Malaysia with grant B1/06-Res (08)2009.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Gore ME, Szczylik C, Porta C et al (2015) Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Br J Cancer 113:12–19. doi: 10.1038/bjc.2015.196 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van Erp NP, Gelderblom H, Guchelaar H-J (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706. doi: 10.1016/j.ctrv.2009.08.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Lombardi G, Di Stefano AL, Farina P et al (2014) Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature. Cancer Treat Rev 40:951–959. doi: 10.1016/j.ctrv.2014.05.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Gore ME, Hariharan S, Porta C et al (2011) Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 117:501–509. doi: 10.1002/cncr.25452 CrossRefPubMedGoogle Scholar
  5. 5.
    Hatipoglu G, Hock SW, Weiss R et al (2015) Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment. Cancer Sci 106:160–170. doi: 10.1111/cas.12580 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lahner H, Rinke A, Unger N et al (2016) Sunitinib efficacy in patients with advanced pNET in clinical practice. Horm Metab Res 48:575–580. doi: 10.1055/s-0042-105289 CrossRefPubMedGoogle Scholar
  7. 7.
    Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35. doi: 10.1200/JCO.2005.02.2194 CrossRefPubMedGoogle Scholar
  8. 8.
    Chee EL-C, Lim AYL, Modamio P et al (2015) Sunitinib tissue distribution changes after coadministration with ketoconazole in mice. Eur J Drug Metab Pharmacokinet 41:309–319. doi: 10.1007/s13318-015-0264-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Lau CLL, Chan ST, Selvaratanam M et al (2015) Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently. Fundam Clin Pharmacol 29:404–416. doi: 10.1111/fcp.12126 CrossRefPubMedGoogle Scholar
  10. 10.
    Zimmerman EI, Hu S, Roberts JL et al (2013) Contribution of OATP1B1 and OATP1B3 to the disposition of Sorafenib and Sorafenib-glucuronide. Clin Cancer Res 19:1458–1466. doi: 10.1158/1078-0432.CCR-12-3306 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shitara Y, Maeda K, Ikejiri K et al (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34:45–78. doi: 10.1002/bdd.1823 CrossRefPubMedGoogle Scholar
  12. 12.
    Shukla S, Robey RW, Bates SE, Ambudkar SV (2008) Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37:359–365. doi: 10.1124/dmd.108.024612 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deng J (2014) ABC transporters in multi-drug resistance and ADME-Tox of small molecule tyrosine kinase inhibitors. Pharm Res 31:2237–2255. doi: 10.1007/s11095-014-1389-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Hu S, Chen Z, Franke R et al (2009) Interaction of the Multikinase inhibitors Sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 15:6062–6069. doi: 10.1158/1078-0432.CCR-09-0048 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan SY, Wong MM, Tiew ALW et al (2016) Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice. Cancer Chemother Pharmacol 78:709–718. doi: 10.1007/s00280-016-3120-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Speed B, Bu H-Z, Pool WF et al (2012) Pharmacokinetics, distribution, and metabolism of [14C] sunitinib in rats, monkeys, and humans. Drug Metab Dispos Biol Fate Chem 40:539–555. doi: 10.1124/dmd.111.042853 CrossRefPubMedGoogle Scholar
  17. 17.
    Sakuma T, Kawasaki Y, Jarukamjorn K, Nemoto N (2009) Sex differences of drug-metabolizing enzyme: female predominant expression of human and mouse cytochrome P450 3A isoforms. J Health Sci 55:325–337CrossRefGoogle Scholar
  18. 18.
    Cui YJ, Cheng X, Weaver YM, Klaassen CD (2009) Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 37:203–210. doi: 10.1124/dmd.108.023721 CrossRefPubMedGoogle Scholar
  19. 19.
    Merino G, van Herwaarden AE, Wagenaar E et al (2005) Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 67:1765–1771. doi: 10.1124/mol.105.011080 CrossRefPubMedGoogle Scholar
  20. 20.
    Maher JM, Slitt AL, Cherrington NJ et al (2005) Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos 33:947–955. doi: 10.1124/dmd.105.003780 CrossRefPubMedGoogle Scholar
  21. 21.
    Bowlin SJ, Xia F, Wang W et al (2013) Twelve-month frequency of drug-metabolizing enzyme and transporter-based drug-drug interaction potential in patients receiving oral enzyme-targeted kinase inhibitor antineoplastic agents. Mayo Clin Proc 88:139–148. doi: 10.1016/j.mayocp.2012.10.020 CrossRefPubMedGoogle Scholar
  22. 22.
    Karczmarek-Borowska B, Salek-Zan A (2015) Hepatotoxicity of molecular targeted therapy. Wspólczesna Onkol 19:87–92. doi: 10.5114/wo.2014.43495 CrossRefGoogle Scholar
  23. 23.
    Domagała-Haduch M, Cedrych I, Jasiówka M et al (2016) Analysis of adverse events of sunitinib in patients treated for advanced renal cell carcinoma. Arch Med Sci 2:360–364. doi: 10.5114/aoms.2016.59262 CrossRefGoogle Scholar
  24. 24.
    Guillen SS, Meijer M, de Jongh FE (2016) Lethal acute liver failure in a patient treated with sunitinib. BMJ Case Rep. doi: 10.1136/bcr-2015-213624 PubMedGoogle Scholar
  25. 25.
    Mermershtain W, Lazarev I, Shani-Shrem N, Ariad S (2013) Fatal liver failure in a patient treated with sunitinib for renal cell carcinoma. Clin Genitourin Cancer 11:70–72. doi: 10.1016/j.clgc.2012.09.005 CrossRefPubMedGoogle Scholar
  26. 26.
    Mueller EW, Rockey ML, Rashkin MC (2008) Sunitinib-related fulminant hepatic failure: case report and review of the literature. Pharmacotherapy 28:1066–1070. doi: 10.1592/phco.28.8.1066 CrossRefPubMedGoogle Scholar
  27. 27.
    Lankheet NAG, Kloth JSL, Gadellaa-van Hooijdonk CGM et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449. doi: 10.1038/bjc.2014.194 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Akaza H, Naito S, Ueno N et al (2015) Real-world use of sunitinib in Japanese patients with advanced renal cell carcinoma: efficacy, safety and biomarker analyses in 1689 consecutive patients. Jpn J Clin Oncol 45:576–583. doi: 10.1093/jjco/hyv045 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leblanc L (2015) Polypharmacy in patients with advanced cancer and the role of medication discontinuation. Lancet Oncol 16:e333–e341. doi: 10.1016/S1470-2045(15)00080-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Stein J, Mann J (2016) Specialty pharmacy services for patients receiving oral medications for solid tumors. Am J Health Syst Pharm 73:775–796. doi: 10.2146/ajhp150863 CrossRefPubMedGoogle Scholar
  31. 31.
    Segarra I, Modamio P, Fernández C, Mariño EL (2016) Sunitinib possible sex-divergent therapeutic outcomes. Clin Drug Investig 36:791–799. doi: 10.1007/s40261-016-0428-5 CrossRefPubMedGoogle Scholar
  32. 32.
    Khosravan R, Motzer RJ, Fumagalli E, Rini BI (2016) Population pharmacokinetic/Pharmacodynamic modeling of sunitinib by dosing schedule in patients with advanced renal cell carcinoma or gastrointestinal stromal tumor. Clin Pharmacokinet 55:1251–1269. doi: 10.1007/s40262-016-0404-5 CrossRefPubMedGoogle Scholar
  33. 33.
    Weise AM, Liu CY, Shields AF (2009) Fatal liver failure in a patient on acetaminophen treated with sunitinib malate and levothyroxine. Ann Pharmacother 43:761–766. doi: 10.1345/aph.1L528 CrossRefPubMedGoogle Scholar
  34. 34.
    Bilbao-Meseguer I, Jose BS, Lopez-Gimenez LR et al (2015) Drug interactions with sunitinib. J Oncol Pharm Pract 21:52–66. doi: 10.1177/1078155213516158 CrossRefPubMedGoogle Scholar
  35. 35.
    Hammer KJ, Segal EM, Alwan L et al (2016) Collaborative practice model for management of pain in patients with cancer. Am J Health-Syst Pharm 73:1434–1441. doi: 10.2146/ajhp150770 CrossRefPubMedGoogle Scholar
  36. 36.
    Slosky LM, Thompson BJ, Sanchez-Covarrubias L et al (2013) Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol 84:774–786. doi: 10.1124/mol.113.086298 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tang SC, Lagas JS, Lankheet NAG et al (2012) Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 130:223–233. doi: 10.1002/ijc.26000 CrossRefPubMedGoogle Scholar
  38. 38.
    McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187. doi: 10.1007/s11095-013-1007-6 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bailer AJ (1988) Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16:303–309CrossRefPubMedGoogle Scholar
  40. 40.
    Yuan J (1993) Estimation of variance for AUC in animal studies. J Pharm Sci 82:761–763CrossRefPubMedGoogle Scholar
  41. 41.
    Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347:755–764. doi: 10.1124/jpet.113.208959 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tan SY, Kan E, Lim WY et al (2011) Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 63:918–925. doi: 10.1111/j.2042-7158.2011.01296.x CrossRefPubMedGoogle Scholar
  43. 43.
    Breljak D, Brzica H, Sweet DH et al (2013) Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am J Physiol Renal Physiol 304:F1114–F1126. doi: 10.1152/ajprenal.00201.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jemnitz K, Heredi-Szabo K, Janossy J et al (2010) ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 42:402–436. doi: 10.3109/03602530903491741 CrossRefPubMedGoogle Scholar
  45. 45.
    Hou W-Y, Xu S-F, Zhu Q-N et al (2014) Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicol Appl Pharmacol 280:370–377. doi: 10.1016/j.taap.2014.08.020 CrossRefPubMedGoogle Scholar
  46. 46.
    Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M (2012) Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev 64:421–449. doi: 10.1124/pr.111.004614 CrossRefPubMedGoogle Scholar
  47. 47.
    Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    van Leeuwen RWF, Jansman FGA, van den Bemt PMLA et al (2015) Drug–drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann Oncol 26:992–997. doi: 10.1093/annonc/mdv029 CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Z-X, Sun J, Howell CE et al (2014) Prediction of the likelihood of drug interactions with kinase inhibitors based on in vitro and computational studies. Fundam Clin Pharmacol 28:551–582. doi: 10.1111/fcp.12069 CrossRefPubMedGoogle Scholar
  50. 50.
    Novak A, Carpini GD, Ruiz ML et al (2013) Acetaminophen inhibits intestinal p-glycoprotein transport activity. J Pharm Sci 102:3830–3837. doi: 10.1002/jps.23673 CrossRefPubMedGoogle Scholar
  51. 51.
    Aleksunes LM, Slitt AL, Maher JM et al (2008) Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol Appl Pharmacol 226:74–83. doi: 10.1016/j.taap.2007.08.022 CrossRefPubMedGoogle Scholar
  52. 52.
    Lim AYL, Segarra I, Chakravarthi S et al (2010) Histopathology and biochemistry analysis of the interaction between sunitinib and paracetamol in mice. BMC Pharmacol 10:14. doi: 10.1186/1471-2210-10-14 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Karbownik A, Szałek E, Sobańska K et al (2015) The effect of sunitinib on the plasma exposure of intravenous paracetamol and its major metabolite: paracetamol glucuronide. Eur J Drug Metab Pharmacokinet 40:163–170. doi: 10.1007/s13318-014-0191-z CrossRefPubMedGoogle Scholar
  54. 54.
    Schmetzer O, Flörcken A (2012) Sex differences in the drug therapy for oncologic diseases. Handb Exp Pharmacol 214:411–442. doi: 10.1007/978-3-642-30726-3_19 CrossRefGoogle Scholar
  55. 55.
    Bamias A, Tzannis K, Beuselinck B et al (2013) Development and validation of a prognostic model in patients with metastatic renal cell carcinoma treated with sunitinib: a European collaboration. Br J Cancer 109:332–341. doi: 10.1038/bjc.2013.341 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun T, Plutynski A, Ward S, Rubin JB (2015) An integrative view on sex differences in brain tumors. Cell Mol Life Sci 72:3323–3342. doi: 10.1007/s00018-015-1930-2 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    van der Veldt AM, Boven E, Helgason HH et al (2008) Predictive factors for severe toxicity of sunitinib in unselected patients with advanced renal cell cancer. Br J Cancer 99:259–265. doi: 10.1038/sj.bjc.6604456 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Narjoz C, Cessot A, Thomas-Schoemann A et al (2015) Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Investig New Drugs 33:257–268. doi: 10.1007/s10637-014-0178-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ming Hui Liew
    • 1
  • Salby Ng
    • 1
  • Chii Chii Chew
    • 1
  • Teng Wai Koo
    • 1
  • Yun Lee Chee
    • 1
  • Evelyn Li-Ching Chee
    • 1
  • Pilar Modamio
    • 2
  • Cecilia Fernández
    • 2
  • Eduardo L. Mariño
    • 2
  • Ignacio Segarra
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Pharmaceutical Technology, School of Pharmacy and Health SciencesInternational Medical UniversityBukit JalilMalaysia
  2. 2.Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
  3. 3.Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain

Personalised recommendations