Advertisement

Investigational New Drugs

, Volume 34, Issue 5, pp 643–649 | Cite as

The renal effects of ALK inhibitors

  • Hassan IzzedineEmail author
  • Rania Kheder El-Fekih
  • Mark A. Perazella
REVIEW

Summary

Anaplastic lymphoma kinase 1 (ALK-1) is a member of the insulin receptor tyrosine kinase family. In clinical practice, three small molecule inhibitors of ALK-1 are used, namely crizotinib, ceritinib and alectinib. Several more agents are in active pre-clinical and clinical studies. Crizotinib is approved for the treatment of advanced ALK-positive non-small cell lung cancer (NSCLC). According to the package insert and published literature, treatment with crizotinib appears to be associated with kidney failure as well as an increased risk for the development and progression of renal cysts. In addition, this agent is associated with development of peripheral edema and rare electrolyte disorders. This review focuses on the adverse renal effects of Crizotinib in clinical practice.

Keywords

Anaplastic lymphoma kinase ALK-1 Crizotinib Serum creatinine Cyst Onco-nephrology 

References

  1. 1.
    Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC (1995) Large-cell anaplastic lymphoma-specific translocation (t[2;5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet 345(8942):87–90CrossRefPubMedGoogle Scholar
  2. 2.
    Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212CrossRefPubMedGoogle Scholar
  3. 3.
    Roskoski R Jr (2013) Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68(1):68–94CrossRefPubMedGoogle Scholar
  4. 4.
    Bullrich F, Morris SW, Hummel M, Pileri S, Stein H, Croce CM (1994) Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res 54(11):2873–2877PubMedGoogle Scholar
  5. 5.
    Pillay K, Govender D, Chetty R (2002) ALK protein expression in rhabdomyosarcomas. Histopathology 41(5):461–467CrossRefPubMedGoogle Scholar
  6. 6.
    Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974CrossRefPubMedGoogle Scholar
  7. 7.
    Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T et al (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61(2):163–169CrossRefPubMedGoogle Scholar
  8. 8.
    American Cancer Society (2015) Cancer facts & figures 2015. American Cancer Society, AtlantaGoogle Scholar
  9. 9.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefPubMedGoogle Scholar
  10. 10.
    Ettinger D, Akerley W, Bepler G, Blum M, Chang A, Cheney R et al (2010) Non-small cell lung cancer. J Natl Compr Cancer Netw 8:740–801Google Scholar
  11. 11.
    Larsen J, Cascon T, Gerber D, Heymach J, Minna J (2011) Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 17:512–527CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al (2007) Identification of the transforming EML4-ALK fusion gene in non-smal-cell lung cancer. Nature 448:561–566CrossRefPubMedGoogle Scholar
  13. 13.
    Mano H (2008) Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci 99:2349–2355CrossRefPubMedGoogle Scholar
  14. 14.
    Horn L, Pao W (2009) EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol 27:4232–4235CrossRefPubMedGoogle Scholar
  15. 15.
    Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27:4247–4253CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Camidge DR, Doebele RC (2012) Treating ALK-positive lung cancer—early successes and future challenges. Nat Rev Clin Oncol 9:268–277CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Blackhall FH, Peters S, Bubendorf L et al (2014) Prevalence and clinical outcomes for patients with ALK-positive resected stage I-III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol 32:2780–2787CrossRefPubMedGoogle Scholar
  18. 18.
    Sullivan I, Planchard D (2016) ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol 8(1):32–47PubMedPubMedCentralGoogle Scholar
  19. 19.
    Solomon B, Mok T, Kim D, Wu Y, Nakagawa K, Mekhail T et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177CrossRefPubMedGoogle Scholar
  20. 20.
    Camidge D, Bang Y, Kwak E, Iafrate A, Varella-Garcia M, Fox S et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13:1011–1019CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Christensen JG, Zou HY, Arango ME et al (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6(12 Pt 1):3314CrossRefPubMedGoogle Scholar
  22. 22.
    Li C, Alvey C, Bello A et al. (2011) Pharmacokinetics (PK) of crizotinib (PF- 02341066) in patients with advanced non-small cell lung cancer (NSCLC) and other solid tumors. J Clin Oncol 29(Suppl):abstract e13065Google Scholar
  23. 23.
    FDA (2011) Prescribing information. Xalkori (crizotinib) or capsules. Pfizer labs, New York, Available from: http://www.accessdata.fda.gov/ drugsatfdadocs/label/2011/202570s000lbl.pdf. [Last accessed on 2013 Mar 6Google Scholar
  24. 24.
    US Food and Drug Administration (2013) Approval history XALKORI, NDA no. 202570, http://labeling.pfizer.com/showlabeling.aspx?id=676. Accessed November 15, 2013
  25. 25.
    Ou SHI, Salgia R, Clark J (2010) Comparison of crizotinib (PF-02341066) pharmacokinetics between Asian and non-Asian patients with advanced malignancies. J Thorac Oncol 5(Suppl 5):S382Google Scholar
  26. 26.
    Camidge DR, Bang Y, Kwak EL, et al. (2011) Progression-free survival (PFS) from a phase 1 study of crizotinib (PF-02341066) in patients with ALK positive non-small cell lung cancer (NSCLC). J Clin Oncol 29(Suppl):abstract 2501Google Scholar
  27. 27.
    Tabernero J, Elez M, Herranz M et al (2014) A pharmacodynamics/pharmacokinetic study of Ficlatuzumab in patients with advanced solid tumors and liver metastases. Clin Cancer Res 20:2793–2804CrossRefPubMedGoogle Scholar
  28. 28.
    Brosnan EM, Weickhardt AJ, Lu X, Maxon DA, Barón AE, Chonchol M (2013) Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small-cell lung cancer treated with the ALK inhibitor crizotinib. Cancer. doi: 10.1002/cncr.2847 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC (2011) Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin J Am Soc Nephrol 6:1963–1972CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795CrossRefPubMedGoogle Scholar
  31. 31.
    Gastaud L, Ambrosetti D, Otto J, Marquette CH, Coutts M, Hofman P et al (2013) Acute kidney injury following crizotinib administration for non-small-cell lung adenocarcinoma. Lung Cancer 82:362–364CrossRefPubMedGoogle Scholar
  32. 32.
    Martorell PM, Alvaro MH, Salguero MAS, Molla AI (2014) Crizotinib and renal insufficiency: a case report and review of the literature. Lung Cancer 84:310–313CrossRefGoogle Scholar
  33. 33.
    Ciarimboli G, Lancaster CS, Schlatter E et al (2012) Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res 18:1101–1108CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Breyer MD, Qi Z (2010) Better nephrology for mice–and man. Kidney Int 77:487–489CrossRefPubMedGoogle Scholar
  35. 35.
    Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981CrossRefPubMedGoogle Scholar
  36. 36.
    Burgess E, Blair A, Krichman K, Cutler RE (1982) Inhibition of renal creatinine secretion by cimetidine in humans. Ren Physiol 5:27–30PubMedGoogle Scholar
  37. 37.
    van Acker BA, Koomen GC, Koopman MG, de Waart DR, Arisz L (1992) Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 340:1326–1329CrossRefPubMedGoogle Scholar
  38. 38.
    Kastrup J, Petersen P, Bartram R, Hansen JM (1985) The effect of trimethoprim on serum creatinine. Br J Urol 57:265–268CrossRefPubMedGoogle Scholar
  39. 39.
    Myre SA, McCann J, First MR, Cluxton RJ Jr (1987) Effect of trimethoprim on serum creatinine in healthy and chronic renal failure volunteers. Ther Drug Monit 9:161–165CrossRefPubMedGoogle Scholar
  40. 40.
    Naderer O, Nafziger AN, Bertino JS Jr (1997) Effects of moderate-dose versus high-dose trimethoprim on serum creatinine and creatinine clearance and adverse reactions. Antimicrob Agents Chemother 41:2466–2470PubMedPubMedCentralGoogle Scholar
  41. 41.
    Opravil M, Keusch G, Luthy R (1993) Pyrimethamine inhibits renal secretion of creatinine. Antimicrob Agents Chemother 37:1056–1060CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Camidge DR, Brosnan EM, DeSilva C, Koo PJ, Chonchol M (2014) Crizotinib effects on creatinine and non-creatinine-based measures of glomerular filtration rate. J Thorac Oncol 9(11):1634–1637CrossRefPubMedGoogle Scholar
  43. 43.
    Whelan TF (2010) Guidelines on the management of renal cyst disease. Can Urol Assoc J 4:98–99CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Carrim ZI, Murchison JT (2003) The prevalence of simple renal and hepatic cysts detected by spiral computed tomography. Clin Radiol 58:626–629CrossRefPubMedGoogle Scholar
  45. 45.
    Minor LD, Picken MM, Campbell SC (2003) Pp. 170–171 in AUA update series (Vol. 22): benign renal tumors. American Urological Association, Houston, TX. Whelan TF. Guidelines on the management of renal cyst disease. Can Urol Assoc J. 2010;4:98–99Google Scholar
  46. 46.
    Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10CrossRefPubMedGoogle Scholar
  47. 47.
    Israel GM, Bosniak AM (2005) An update of the Bosniak renal cyst classification system. Urology 66:484–488CrossRefPubMedGoogle Scholar
  48. 48.
    Curry NS, Cochran ST, Bissada NK (2000) Cystic renal masses: accurate Bosniak classification requires adequate renal CT. AJR Am J Roentgenol 175:339–342CrossRefPubMedGoogle Scholar
  49. 49.
    Eknoyan G (2009) A clinical view of simple and complex renal cysts. J Am Soc Nephrol 20:1874–1876CrossRefPubMedGoogle Scholar
  50. 50.
    Mosharafa AA (2008) Prevalence of renal cysts in a Middle-Eastern population: an evaluation of characteristics and risk factors. BJU Int 101:736–738CrossRefPubMedGoogle Scholar
  51. 51.
    Dong S, Patel N, Kundavaram C, Glassman D, Bagley D (2011) A contemporary study of renal cysts in a representative US population. Presented at the New England and Mid-Atlantic Sections of the American Urological Association 2011 Joint Annual Meeting, Orlando, FL, 3–5 November 2011. Available at http://meeting.neaua.org/abstracts/2011/6.cgi (accessed 4 November 2014)
  52. 52.
    Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY et al (2014) Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 9(11):1720–1725CrossRefPubMedGoogle Scholar
  53. 53.
    Schnell P, Bartlett CH, Solomon BJ, Tassell V, Shaw AT, de Pas T, Lee SH, Lee GK, Tanaka K, Tan W, Tang Y, Wilner KD, Safferman A, Han JY (2015) Complex renal cysts associated with crizotinib treatment. Cancer Med 4(6):887–896CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    XALKORI U.S (2014) Physician prescribing information. Available at http://labeling.pfizer.com/ShowLabeling.aspx?id=676. Accessed May 15, 2014
  55. 55.
    Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib vs chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385CrossRefPubMedGoogle Scholar
  56. 56.
    Souteyrand P, Burtey S, Barlesi F (2015) Multicystic kidney disease: a complication of crizotinib. Diagn Interv Imaging 96(4):393–395CrossRefPubMedGoogle Scholar
  57. 57.
    Sierra JR, Tsao MS (2011) c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 3(Suppl 1):S21–S35CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pisters LL, El-Naggar AK, Luo W, Malpica A, Lin SH (1997) C-met protooncogene expression in benign and malignant human renal tissues. J Urol 158(3 Pt 1):724–728CrossRefPubMedGoogle Scholar
  59. 59.
    Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A, Kano M et al (1994) Mediation of renal cyst formation by hepatocyte growth factor. Lancet 344:789–791CrossRefPubMedGoogle Scholar
  60. 60.
    Konda R, Sato H, Hatafuku F, Nozawa T, Ioritani N, Fujioka T (2014) Expression of hepatocyte growth factor and its receptor C-met in acquired renal cystic disease associated with renal cell carcinoma. J Urol 171:2166–2170CrossRefGoogle Scholar
  61. 61.
    Zhou D, Tan RJ, Lin L, Zhou L, Liu Y (2013) Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 84:509–520CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA (2012) c-Met and NF-kappaBdependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol 23:1309–1318CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cowley BD Jr, Rupp JC, Muessel MJ, Gattone VH 2nd (1997) Gender and the effect of gonadal hormones on the progression of inherited polycystic kidney disease in rats. Am J Kidney Dis 29(2):265–272CrossRefPubMedGoogle Scholar
  64. 64.
    Jayapalan S, Saboorian MH, Edmunds JW, Aukema HM (2000) High dietary fat intake increases renal cyst disease progression in Han: SPRD-cy rats. J Nutr 130(9):2356–2360PubMedGoogle Scholar
  65. 65.
    Weickhardt AJ, Rothman MS, Salian-Mehta S, Kiseljak-Vassiliades K, Oton AB, Doebele RC, Wierman ME, Camidge DR (2012) Rapid onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer 118(21):5302–5309CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hassan Izzedine
    • 1
    Email author
  • Rania Kheder El-Fekih
    • 2
  • Mark A. Perazella
    • 3
  1. 1.Department of NephrologyMonceau Park International Clinic ParisParisFrance
  2. 2.Department of NephrologyLa Rabta HospitalTunisTunisia
  3. 3.Department of NephrologyYale University School of MedicineNew HavenUSA

Personalised recommendations