Investigational New Drugs

, Volume 34, Issue 5, pp 614–624 | Cite as

A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia

  • Karen W. L. YeeEmail author
  • Hsiao-Wei T. Chen
  • David W. Hedley
  • Sue Chow
  • Joseph Brandwein
  • Andre C. Schuh
  • Aaron D. Schimmer
  • Vikas Gupta
  • Deborah Sanfelice
  • Tara Johnson
  • Lisa W. Le
  • Jamie Arnott
  • Mark R. Bray
  • Carolyn Sidor
  • Mark D. Minden


ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11–65 %). The RP2D in this patient population is 225 mg orally once daily.


Aurora kinase inhibitor ENMD-2076 Acute myeloid leukemia Chronic myelomonocytic leukemia 


Conflict of Interest Disclosures

Jaime Arnott, Mark R. Bray and Carolyn Sidor were employees of EntreMed, Inc. Karen WL Yee received research funding from EntreMed, Inc.


  1. 1.
    Moore AS, Blagg J, Linardopoulos S, Pearson AD (2010) Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 24:671–678CrossRefPubMedGoogle Scholar
  2. 2.
    Gautschi O, Heighway J, Mack PC, et al. (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648CrossRefPubMedGoogle Scholar
  3. 3.
    Goldenson B, Kirsammer G, Stankiewicz MJ, et al. (2015) Aurora kinase A is required for hematopoiesis but is dispensable for murine megakaryocyte endomitosis and differentiation. Blood 125:2141–2150CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lordier L, Chang Y, Jalil A, et al. (2010) Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process. Blood 116:2345–2355CrossRefPubMedGoogle Scholar
  5. 5.
    Kim SJ, Jang JE, Cheong JW, et al. (2012) Aurora A kinase expression is increased in leukemia stem cells, and a selective Aurora A kinase inhibitor enhances Ara-C-induced apoptosis in acute myeloid leukemia stem cells. Korean J Hematol 47:178–185CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ye D, Garcia-Manero G, Kantarjian HM, et al. (2009) Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia. J Hematop 2:2–8CrossRefPubMedGoogle Scholar
  7. 7.
    Ikezoe T, Yang J, Nishioka C, et al. (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6:1851–1857CrossRefPubMedGoogle Scholar
  8. 8.
    Yang J, Ikezoe T, Nishioka C, et al. (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110:2034–2040CrossRefPubMedGoogle Scholar
  9. 9.
    Huang XF, Luo SK, Xu J, et al. (2008) Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 111:2854–2865CrossRefPubMedGoogle Scholar
  10. 10.
    Walsby E, Walsh V, Pepper C, et al. (2008) Effects of the aurora kinase inhibitors AZD1152-HQPA and ZM447439 on growth arrest and polyploidy in acute myeloid leukemia cell lines and primary blasts. Haematologica 93:662–669CrossRefPubMedGoogle Scholar
  11. 11.
    Ochi T, Fujiwara H, Suemori K, et al. (2009) Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 113:66–74CrossRefPubMedGoogle Scholar
  12. 12.
    Lucena-Araujo AR, de Oliveira FM, Leite-Cueva SD, et al. (2011) High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leuk Res 35:260–264CrossRefPubMedGoogle Scholar
  13. 13.
    Fletcher GC, Brokx RD, Denny TA, et al. (2011) ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther 10:126–137CrossRefPubMedGoogle Scholar
  14. 14.
    Aguayo A, Kantarjian HM, Estey EH, et al. (2002) Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 95:1923–1930CrossRefPubMedGoogle Scholar
  15. 15.
    Padro T, Bieker R, Ruiz S, et al. (2002) Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 16:1302–1310CrossRefPubMedGoogle Scholar
  16. 16.
    Aguayo A, Kantarjian H, Manshouri T, et al. (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96:2240–2245PubMedGoogle Scholar
  17. 17.
    Fiedler W, Graeven U, Ergun S, et al. (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89:1870–1875PubMedGoogle Scholar
  18. 18.
    Dias S, Hattori K, Zhu Z, et al. (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106:511–521CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Whitman SP, Archer KJ, Feng L, et al. (2001) Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A cancer and leukemia group B study. Cancer Res 61:7233–7239PubMedGoogle Scholar
  20. 20.
    Kottaridis PD, Gale RE, Frew ME, et al. (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–1759CrossRefPubMedGoogle Scholar
  21. 21.
    Yamamoto Y, Kiyoi H, Nakano Y, et al. (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439CrossRefPubMedGoogle Scholar
  22. 22.
    Ning ZQ, Li J, Arceci RJ (2001) Signal transducer and activator of transcription 3 activation is required for Asp(816) mutant c-Kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood 97:3559–3567CrossRefPubMedGoogle Scholar
  23. 23.
    Wells SJ, Bray RA, Stempora LL, Farhi DC (1996) CD117/CD34 expression in leukemic blasts. Am J Clin Pathol 106:192–195CrossRefPubMedGoogle Scholar
  24. 24.
    Xu Q, Simpson SE, Scialla TJ, et al. (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao S, Konopleva M, Cabreira-Hansen M, et al. (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18:267–275CrossRefPubMedGoogle Scholar
  26. 26.
    Grandage VL, Gale RE, Linch DC, Khwaja A (2005) PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p 53 pathways. Leukemia 19:586–594PubMedGoogle Scholar
  27. 27.
    Preisler HD, Kinniburgh AJ, Wei-Dong G, Khan S (1987) Expression of the protooncogenes c-myc, c-fos, and c-fms in acute myelocytic leukemia at diagnosis and in remission. Cancer Res 47:874–880PubMedGoogle Scholar
  28. 28.
    Rambaldi A, Wakamiya N, Vellenga E, et al. (1988) Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. J Clin Invest 81:1030–1035CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang C, Kelleher CA, Cheng GY, et al. (1988) Expression of the CSF-1 gene in the blast cells of acute myeloblastic leukemia: association with reduced growth capacity. J Cell Physiol 135:133–138CrossRefPubMedGoogle Scholar
  30. 30.
    Aikawa Y, Katsumoto T, Zhang P, et al. (2010) PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med 16:580–585CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vardiman JW, Thiele J, Arber DA, et al. (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951CrossRefPubMedGoogle Scholar
  32. 32.
    Greenberg P, Cox C, LeBeau MM, et al. (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088PubMedGoogle Scholar
  33. 33.
    Diamond JR, Bastos BR, Hansen RJ, et al. (2011) Phase I safety, pharmacokinetic, and pharmacodynamic study of ENMD-2076, a novel angiogenic and Aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 17:849–860CrossRefPubMedGoogle Scholar
  34. 34.
    Cheson BD, Bennett JM, Kopecky KJ, et al. (2003) Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649CrossRefPubMedGoogle Scholar
  35. 35.
    Cheson BD, Bennett JM, Kantarjian H, et al. (2000) Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96:3671–3674PubMedGoogle Scholar
  36. 36.
    Chow S, Hedley D, Grom P, et al. (2005) Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67:4–17CrossRefPubMedGoogle Scholar
  37. 37.
    How J, Yee K (2012) ENMD-2076 for hematological malignancies. Expert Opin Investig Drugs 21:717–732CrossRefPubMedGoogle Scholar
  38. 38.
    Cheung CH, Sarvagalla S, Lee JY, et al. (2014) Aurora kinase inhibitor patents and agents in clinical testing: an update (2011–2013). Expert Opin Ther Pat 24:1021–1038CrossRefPubMedGoogle Scholar
  39. 39.
    Matulonis UA, Lee J, Lasonde B, et al. (2013) ENMD-2076, an oral inhibitor of angiogenic and proliferation kinases, Has activity in recurrent, platinum resistant ovarian cancer. Eur J Cancer 49:121–131CrossRefPubMedGoogle Scholar
  40. 40.
    Loong HHF, Blackstein ME, Gupta AA et al (2013) A phase II study of oral ENMD-2076 administered to patients (pts) with advanced soft tissue sarcoma (STS). J Clin Oncol 31:5 s (suppl; abstract 10528)Google Scholar
  41. 41.
    Martin-Lorente C, Tan DSP, Dhani N et al (2014) Phase II study of oral ENMD-2076 administered to patients with ovarian clear cell carcinoma: a trial of the Princess Margaret Phase II Consortium. J Clin Oncol 32:5 s (suppl; abstract TPS5620)Google Scholar
  42. 42.
    Farag S, Zhang S, Suvannasankha A et al (2010) Clinical activity of a novel multiple tyrosine kinase and Aurora kinase inhibitor, ENMD-2076, Against multiple myeloma: interim phase I trial results. Blood 116:(abstract 1957)Google Scholar
  43. 43.
    Giles F CJ, Bergstrom DA, Xiao A et al (2006) MK-0457, a novel multikinase inhibitor, Is active in patients with chronic myeloid leukemia (CML) and acute lymphocytic leukemia (ALL) with the T315I BCR-ABL resistance mutation and patients with refractory JAK-2 positive myeloproliferative diseases (MPD). Blood 108:(abstract 1967)Google Scholar
  44. 44.
    Goldberg SL, Fenaux P, Craig MD, et al. (2014) An exploratory phase 2 study of investigational Aurora A kinase inhibitor alisertib (MLN8237) in acute myelogenous leukemia and myelodysplastic syndromes. Leuk Res Rep 3:58–61PubMedPubMedCentralGoogle Scholar
  45. 45.
    Fathi AT WS, Blonquist TM, Ballen KK et al (2014) A phase I study of the aurora a kinase inhibitor alisertib in combination with 7 + 3 induction chemotherapy in patients with acute myeloid leukemia. Blood 124:(abstract 119)Google Scholar
  46. 46.
    Kojima K, Konopleva M, Tsao T, et al. (2008) Concomitant inhibition of Mdm2-p 53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 112:2886–2895CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Li J, Hong MJ, Chow JP, et al. (2015) Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe. Oncotarget 6:9327–9340CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sparta AM, Bressanin D, Chiarini F, et al. (2014) Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle 13:2237–2247CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zullo KM, Guo Y, Cooke L, et al. (2015) Aurora A kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T-cell lymphoma. Clin Cancer Res 21:4097–4109CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karen W. L. Yee
    • 1
    Email author
  • Hsiao-Wei T. Chen
    • 2
  • David W. Hedley
    • 1
    • 2
  • Sue Chow
    • 2
  • Joseph Brandwein
    • 1
    • 3
  • Andre C. Schuh
    • 1
  • Aaron D. Schimmer
    • 1
  • Vikas Gupta
    • 1
  • Deborah Sanfelice
    • 1
  • Tara Johnson
    • 1
  • Lisa W. Le
    • 4
  • Jamie Arnott
    • 5
  • Mark R. Bray
    • 5
  • Carolyn Sidor
    • 5
  • Mark D. Minden
    • 1
  1. 1.Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoCanada
  2. 2.Ontario Cancer InstituteUniversity of TorontoTorontoCanada
  3. 3.Division of Clinical HematologyUniversity of AlbertaEdmontonCanada
  4. 4.Department of BiostatisticsPrincess Margaret Cancer CentreTorontoCanada
  5. 5.EntreMed, IncDurhamUSA

Personalised recommendations