Skip to main content
Log in

Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis in neuroblastoma cells

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Neuroblastoma, a paediatric malignancy of the sympathetic nervous system, accounts for 15 % of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat partly due to the development of multidrug resistance. There is thus a compelling demand for new treatment strategies that can bypass resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various tumour models. We have previously reported that PBOX compounds induce apoptosis in drug sensitive and multidrug resistant neuroblastoma cells and synergistically enhance apoptosis induced by chemotherapeutics such as carboplatin. In this study we present further data concerning the molecular basis of PBOX-induced apoptosis in neuroblastoma. We demonstrate that PBOX-6 induced AMP-activated protein kinase (AMPK) activation and downstream acetyl-CoA carboxylase phosphorylation. Increased reactive oxygen species (ROS) appeared to serve as the upstream signal for AMPK activation as pretreatment of cells with the antioxidant N-acetylcysteine inhibited both AMPK activation and PBOX-induced apoptosis. Furthermore, activation of AMPK by PBOX-6 was found to inhibit mTOR complex 1 (mTORC1) signalling. Finally, we demonstrate the efficacy of PBOX-6 in an in vivo xenograft model of neuroblastoma. This study provides new insights into understanding the molecular and cellular mechanisms involved in PBOX-induced cell death in neuroblastoma and further supports their future use as novel anti-cancer agents for the treatment of neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

Acetyl Co-A carboxylase

AMPK:

5’ adenosine monophosphate-activated protein kinase

CML:

Chronic myeloid leukaemia

DTT:

Dithiothreitol

eEF2:

Eukaryotic elongation factor 2

FAC:

Fluorescence associated cell sorter

FBS:

Foetal bovine serum

H202 :

Hydrogen peroxide

Mcl-1:

Myeloid cell leukemia 1

MDR:

Multidrug resistance

MTA:

Microtubule targeting agent

mTOR:

Mammalian target of rapamycin

NAC:

N-acetylcysteine

ROS:

Reactive oxygen species

PARP:

Poly (ADP-ribose) polymerase

PBS:

Phosphate buffered saline

PBOX:

pyrrolo-1,5-benzoxazepine

References

  1. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23):2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saraswathy M, Gong S (2013) Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 31(8):1397–1407

    Article  CAS  PubMed  Google Scholar 

  4. Zisterer DM, Campiani G, Nacci V, Williams DC (2000) Pyrrolobenzoxazepines induce apoptosis in HL-60, Jurkat and Hut-78 cells: a new class of apoptotic agents. J Pharmacol Exp Ther 293(1):48–59

    CAS  PubMed  Google Scholar 

  5. Greene LM, Fleeton M, Mulligan J, Gowda C, Sheahan BJ, Atkins GJ et al (2005) The pyrrolo-1, 5-benzoxazepine, PBOX-6, inhibits the growth of breast cancer cells in vitro independent of estrogen receptor status, and inhibits breast tumour growth in vivo. Oncol Rep 14(5):1357–1363

    CAS  PubMed  Google Scholar 

  6. Mulligan JM, Greene LM, Cloonan S, Mc Gee MM, Onnis V, Campiani G et al (2006) Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5-benzoxazepines. Mol Pharmacol 70(1):60–70

    CAS  PubMed  Google Scholar 

  7. Nathwani SM, Butler S, Fayne D, McGovern N, Sarkadi B, Meegan MJ et al (2010) Novel microtubule targeting agents, pyrrolo-1,5-benzoxazepines, induce apoptosis in multi-drug resistant (MDR) cancer cells. Cancer Chemother Pharmacol 66(3):585–596

    Article  CAS  PubMed  Google Scholar 

  8. Nathwani SM, Cloonan SM, Stronach M, Campiani G, Lawler M, Williams DC et al (2010) Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce cell cycle arrest and apoptosis in prostate cancer cells. Oncol Rep 24(6):1499–1507

    Article  CAS  PubMed  Google Scholar 

  9. Bright SA, McElligott AM, O’Connell JW, O’Connor L, Carroll P, Campiani G et al (2010) Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo. Br J Cancer 102(10):1474–1482

    Article  CAS  PubMed Central  Google Scholar 

  10. Bright SA, Campiani G, Deininger MW, Lawler M, Williams DC, Zisterer DM (2010) Sequential treatment with flavopiridol synergistically enhances pyrrolo-1,5-benzoxazepine-induced apoptosis in human chronic myeloid leukaemia cells including those resistant to imatinib treatment. Biochem Pharmacol 80(1):31–38

    Article  CAS  PubMed  Google Scholar 

  11. McElligott AM, Maginn EN, Greene LM, McGuckin S, Hayat A, Browne PV et al (2009) The novel tubulin-targeting agent pyrrolo-1,5-benzoxazepine-15 induces apoptosis in poor prognostic subgroups of chronic lymphocytic leukemia. Cancer Res 69(21):8366–8375

    Article  CAS  PubMed  Google Scholar 

  12. Bright SA, Greene LM, Greene TF, Campiani G, Butini S, Brindisi M, Lawler M, Meegan MJ, Williams DC, Zisterer DM (2009) The novel pyrrolo-1,5-benzoxazepine, PBOX-21, potentiates the apoptotic efficacy of STI571 (imatinib mesylate) in human chronic myeloid leukaemia cells. Biochem Pharmacol 77:310–321

  13. Lennon JC, Bright SA, Carroll E, Butini S, Campiani G, O’Meara A et al (2014) The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol 87(4):611–624

    Article  CAS  PubMed  Google Scholar 

  14. Pradelli LA, Bénéteau M, Chauvin C, Jacquin MA, Marchetti S, Muñoz-Pinedo C et al (2010) Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29(11):1641–1652

    Article  CAS  PubMed  Google Scholar 

  15. Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH (2011) Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 226(7):1915–1925

    Article  CAS  PubMed  Google Scholar 

  16. Chen MB, Zhang Y, Wei MX, Shen W, Wu XY, Yao C et al (2013) Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell Signal 25(10):1993–2002

    Article  CAS  PubMed  Google Scholar 

  17. Wu WD, Hu ZM, Shang MJ, Zhao DJ, Zhang CW, Hong D et al (2014) Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1α through regulating AMPK/mTORC1 signalling in GBC-SD gallbladder cancer cells. Int J Mol Sci 15(7):12778–12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H et al (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells. Lab Investig 90(5):762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerksick C, Willoughby D (2005) The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr 2:38–44

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20(3):R83–R99

    Article  CAS  PubMed  Google Scholar 

  22. Vinayak S, Carlson RW (2013) mTOR inhibitors in the treatment of breast cancer. Oncology (Williston Park) 27(1):38–44

    Google Scholar 

  23. Barrett D, Brown VI, Grupp SA, Teachey DT (2012) Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs 14(5):299–316

    PubMed  PubMed Central  Google Scholar 

  24. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS (2014) Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol 60(4):855–865

    Article  CAS  PubMed  Google Scholar 

  25. Johnsen JI, Segerström L, Orrego A, Elfman L, Henriksson M, Kågedal B et al (2008) Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27(20):2910–2922

    Article  CAS  PubMed  Google Scholar 

  26. Campiani G, Nacci V, Fiorini I, De Filippis MP, Garofalo A, Ciani SM et al (1996) Synthesis, biological activity, and SARs of pyrrolobenzoxazepine derivatives, a new class of specific ‘peripheral-type’ benzodiazepine receptor ligands. J Med Chem 39(18):3435–3450

    Article  CAS  PubMed  Google Scholar 

  27. Williams CR, Tabiosa R, Linehana WM, Neckersa L (2007) Intratumor injection of the Hsp90 inhibitor 17AAG decreases tumor growth and induces apoptosis in a prostate cancer xenograft model. J Urol 178:1528–1532

    Article  CAS  PubMed  Google Scholar 

  28. Shah MR, Kriedt CL, Lents NH, Hoyer MK, Jamaluddin N, Klein C et al (2009) Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer. J Exp Clin Cancer Res 28:84

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beck MT, Chen NY, Franek KJ, Chen WY (2003) Experimental therapeutics prolactin antagonist-endostatin fusion protein as a targeted dual-functional therapeutic agent for breast cancer. Cancer Res 63:3598–3604

    CAS  PubMed  Google Scholar 

  30. Garcia-Gil M, Pesi R, Perna S (2003) 5’-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 117:811–820

    Article  CAS  PubMed  Google Scholar 

  31. Hadad SM, Appleyard V, Thompson AM (2009) Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 114:391

    Article  PubMed  Google Scholar 

  32. Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW et al (2011) Metformin inhibits P-glycoprotein expression via the NF-kB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 162(5):1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi HJ, Kim TY, Chung N, Yim JH, Kim WG, Kim JA et al (2011) The influence of the BRAF V600E mutation in thyroid cancer cell lines on the anticancer effects of 5-aminoimidazole-4-carboxamide-ribonucleoside. J Endocrinol 211(1):79–85

    Article  CAS  Google Scholar 

  35. Arsikin K, Kravic-Stevovic T, Jovanovic M, Ristic B, Tovilovic G, Zogovic N et al (2012) Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochim Biophys Acta 1822(11):1826–1836

    Article  CAS  PubMed  Google Scholar 

  36. Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B et al (2009) Mcl-1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists. Cancer Biol Ther 8(16):1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  Google Scholar 

  38. Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282:32539–32548

    Article  CAS  PubMed  Google Scholar 

  39. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  41. Jones RG, Plas DR, Kubek S et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  42. Liang J, Shao SH, Xu ZX et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    Article  CAS  PubMed  Google Scholar 

  43. Hwang PM, Bunz F, Yu J, Rago C et al (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  CAS  PubMed  Google Scholar 

  45. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W et al (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    Article  CAS  PubMed  Google Scholar 

  46. Conklin KA (2004) Free radicals: the pros and cons of antioxidants. Cancer chemotherapy and antioxidants. J Nutr 134:3201–3204, ISSN 0022–3166

    Google Scholar 

  47. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  48. Paletta-Silva R, Rocco-Machado N, Meyer-Fernandes JR (2013) NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int J Mol Sci 14(2):3683–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alexandre J, Hu Y, Lu W, Pelicano H, Huang P (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67(8):3512–3517

    Article  CAS  PubMed  Google Scholar 

  50. Mc Gee MM, Campiani G, Ramunno A, Nacci V, Lawler M, Williams DC et al (2002) Activation of the c-Jun NH2 terminal kinase (JNK) signaling pathway is essential during PBOX-6-induced apoptosis in chronic myelogenous leukemia (CML) cells. J Biol Chem 227(21):18383–18389

    Article  Google Scholar 

  51. Han JE, Choi JW (2012) Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Arch Pharm Res 4:709–715

    Article  Google Scholar 

  52. Ling LU, Tan KB, Lin H, Chiu GN (2011) The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death Dis 2:e129

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312(2):424–431

    Article  CAS  PubMed  Google Scholar 

  54. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  55. Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J (1998) Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8(2):69–81

    Article  CAS  PubMed  Google Scholar 

  56. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM (2013) FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 73(7):2189–2198

    Article  CAS  PubMed  Google Scholar 

  57. Horman S, Beauloye C, Vertommen D, Vanoverschelde JL, Hue L, Rider MH (2003) Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278:41970–41976

    Article  CAS  PubMed  Google Scholar 

  58. Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L et al (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    Article  CAS  PubMed  Google Scholar 

  59. Liu G, Wang R, Wang Y, Li P, Zhao G, Zhao L et al (2013) Ethacrynic acid oxadiazole analogs induce apoptosis in malignant hematologic cells through downregulation of Mcl-1 and c-FLIP, which was attenuated by GSTP1-1. Mol Cancer Ther 12(9):1837–1847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Stefania Butini would like to thank Istituto Toscano Tumori. This study was funded by the National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. Lennon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Grant

The National Children’s Research Centre

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lennon, J.C., Butini, S., Campiani, G. et al. Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis in neuroblastoma cells. Invest New Drugs 34, 663–676 (2016). https://doi.org/10.1007/s10637-016-0366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0366-3

Keywords

Navigation