Advertisement

Investigational New Drugs

, Volume 34, Issue 5, pp 531–540 | Cite as

The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line

  • Raffaele PezzaniEmail author
  • Beatrice Rubin
  • Loris Bertazza
  • Marco Redaelli
  • Susi Barollo
  • Halenya Monticelli
  • Enke Baldini
  • Caterina Mian
  • Carla Mucignat
  • Carla Scaroni
  • Franco Mantero
  • Salvatore Ulisse
  • Maurizio Iacobone
  • Marco Boscaro
PRECLINICAL STUDIES

Abstract

New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright’s staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.

Keywords

VX-680 Aurora kinases Adrenal gland Metastasis Reversan SW13 cells Primary cell cultures Lung carcinoma 

Abbreviations

AK

Aurora kinase

AKI

Aurora kinase inhibitors

ACT

Adrenocortical tumors

ACC

adrenocortical carcinomas

NACA

non-aldosterone-secreting cortical adenomas

APA

aldosterone-producing adenomas

NSCLC

non-small-cell lung cancer

AURK

AK gene

Notes

Acknowledgments

We thank Dr. Frances Coburn and Jillian Walton for text editing. This work was partially supported by the ENS@T-CANCER (European Network for the Study of Adrenal Tumors - grant agreement no. 259735), and the Associazione Italiana per la Ricerca Oncologica di Base (AIROB, Padova, Italy). All authors have read the journal’s authorship agreement and the manuscript has been read and approved by all named authors.

Compliance with ethical standards

Disclosure

All authors have read the journal’s policy on conflicts of interest and have none to disclose.

Supplementary material

10637_2016_358_Fig6_ESM.gif (75 kb)
ESM 1

Supplementary Fig. 1 Cell viability and cell proliferation analyzed by MTT and [3H] thymidine assay. A and B, cell viability in H295R cells at different times and concentrations for ZM447439 and SNS314. Experiments were performed in triplicate. C and D, cell viability in SW13 and H295R cells at 24 h and 72 h treated with mitotane alone or the combination of mitotane + VX-680: V1 = 10 μM(mitotane) + 200 nM(VX-680), V2 = 10 μM(mitotane) + 10 nM(VX-680). E and F, [3H] thymidine incorporation for H295R cells at 24 h and 72 h treated with VX-680. Experiments were performed in triplicate. The standard deviation bars are present for each point-analysis, but they are not easily perceived due to small values. (GIF 75 kb)

10637_2016_358_MOESM1_ESM.tif (1.2 mb)
High resolution image (TIFF 1.18 mb)
10637_2016_358_Fig7_ESM.gif (69 kb)
ESM 2

Supplementary Fig. 2 Representative histograms of SW13 and H295R cells at 24 h and 72 h by flow cytometric analysis with Annexin V-FITC and propidium iodide. A and B, SW13 cells. C and D, H295R cells. Experiments were performed in triplicate. (GIF 69 kb)

10637_2016_358_MOESM2_ESM.tif (773 kb)
High resolution image (TIFF 772 kb)
10637_2016_358_Fig8_ESM.gif (48 kb)
ESM 3

Supplementary Fig. 3 Western blot analysis of SW13 and H295R cells treated and untreated with VX-680. Histograms represent band quantification by ImageJ analysis, normalized to control (arbitrary units). A and B, band quantification of AKB and p-AKB for H295R cells. C, D, E, band quantification of AKB, p-AKB, p-Akt for SW13 cells. * p < 0.05. Experiments were performed in triplicate. (GIF 48 kb)

10637_2016_358_MOESM3_ESM.tif (838 kb)
High resolution image (TIFF 837 kb)
10637_2016_358_Fig9_ESM.gif (16 kb)
ESM 4

Supplementary Fig. 4 Kaplan-Meier survival curves of AURKA or AURKB gene expression in ACC patients (n = 23). Comparison between ACC patients not overexpressing AK genes and ACC patients overexpressing AURKA or AURKB. Log-rank Mantel-Cox Test p = 0.18. (GIF 16 kb)

10637_2016_358_MOESM4_ESM.tif (862 kb)
High resolution image (TIFF 862 kb)

References

  1. 1.
    Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854CrossRefPubMedGoogle Scholar
  2. 2.
    Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN Jr, Gandara DR (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648CrossRefPubMedGoogle Scholar
  3. 3.
    Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10CrossRefPubMedGoogle Scholar
  4. 4.
    Borges KS, Moreno DA, Martinelli CE Jr, Antonini SR, de Castro M, Tucci S Jr, Neder L, Ramalho LN, Seidinger AL, Cardinalli I, Mastellaro MJ, Yunes JA, Brandalise SR, Tone LG, Scrideli CA (2013) Spindle assembly checkpoint gene expression in childhood adrenocortical tumors (ACT): overexpression of aurora kinases a and B is associated with a poor prognosis. Pediatr Blood Cancer 60:1809–1816CrossRefPubMedGoogle Scholar
  5. 5.
    Obreque-Balboa JE, Sun Q, Bernhardt G, Konig B, Buschauer A (2016) Flavonoid derivatives as selective ABCC1 modulators: synthesis and functional characterization. Eur J Med Chem 109:124–133CrossRefPubMedGoogle Scholar
  6. 6.
    Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS (2015) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 18:1–17CrossRefPubMedGoogle Scholar
  7. 7.
    Gagliano T, Gentilin E, Benfini K, Di Pasquale C, Tassinari M, Falletta S, Feo C, Tagliati F, Uberti ED, Zatelli MC (2014) Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells. Endocrine 47:943–951CrossRefPubMedGoogle Scholar
  8. 8.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284CrossRefPubMedGoogle Scholar
  9. 9.
    Moreno P, de la Quintana BA, Musholt TJ, Paunovic I, Puccini M, Vidal O, Ortega J, Kraimps JL, Bollo Arocena E, Rodriguez JM, Gonzalez Lopez O, Del Pozo CD, Iacobone M, Veloso E, Del Pino JM, Garcia Sanz I, Scott-Coombes D, Villar-Del-Moral J, Rodriguez JI, Vazquez Echarri J, Gonzalez Sanchez C, Gutierrez Rodriguez MT, EscoreSsca I, Nuno Vazquez-Garza J, Tobalina Aguirrezabal E, Martin J, Candel Arenas MF, Lorenz K, Martos JM, Ramia JM (2013) Adrenalectomy for solid tumor metastases: results of a multicenter European study. Surgery 154:1215–1222 discussion 1222-1213CrossRefPubMedGoogle Scholar
  10. 10.
  11. 11.
    Libe R (2015) Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front Cell Dev Biol 3:45CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dy BM, Wise KB, Richards ML, Young WF Jr, Grant CS, Bible KC, Rosedahl J, Harmsen WS, Farley DR, Thompson GB (2013) Operative intervention for recurrent adrenocortical cancer. Surgery 154:1292–1299 discussion 1299CrossRefPubMedGoogle Scholar
  13. 13.
    Gaujoux S, Brennan MF (2012) Recommendation for standardized surgical management of primary adrenocortical carcinoma. Surgery 152:123–132CrossRefPubMedGoogle Scholar
  14. 14.
    Mariniello B, Rosato A, Zuccolotto G, Rubin B, Cicala MV, Finco I, Iacobone M, Frigo AC, Fassina A, Pezzani R, Mantero F (2012) Combination of sorafenib and everolimus impacts therapeutically on adrenocortical tumor models. Endocr Relat Cancer 19:527–539CrossRefPubMedGoogle Scholar
  15. 15.
    Wang T, Rainey WE (2012) Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351:58–65CrossRefPubMedGoogle Scholar
  16. 16.
    Bertazza L, Barollo S, Radu CM, Cavedon E, Simioni P, Faggian D, Plebani M, Pelizzo MR, Rubin B, Boscaro M, Pezzani R, Mian C (2015) Synergistic antitumour activity of RAF265 and ZSTK474 on human TT medullary thyroid cancer cells. J Cell Mol Med 19:2244–2252PubMedPubMedCentralGoogle Scholar
  17. 17.
    Barollo S, Bertazza L, Baldini E, Ulisse S, Cavedon E, Boscaro M, Pezzani R, Mian C (2014) The combination of RAF265, SB590885, ZSTK474 on thyroid cancer cell lines deeply impact on proliferation and MAPK and PI3K/Akt signaling pathways. Investig New Drugs 32:626–635CrossRefGoogle Scholar
  18. 18.
    Pezzani R, Rubin B, Redaelli M, Radu C, Barollo S, Cicala MV, Salva M, Mian C, Mucignat-Caretta C, Simioni P, Iacobone M, Mantero F (2014) The antiproliferative effects of ouabain and everolimus on adrenocortical tumor cells. Endocr J 61:41–53CrossRefPubMedGoogle Scholar
  19. 19.
    Redaelli M, Mucignat-Caretta C, Isse AA, Gennaro A, Pezzani R, Pasquale R, Pavan V, Crisma M, Ribaudo G, Zagotto G (2015) New naphthoquinone derivatives against glioma cells. Eur J Med Chem 96:458–466CrossRefPubMedGoogle Scholar
  20. 20.
    Barollo S, Pezzani R, Cristiani A, Redaelli M, Zambonin L, Rubin B, Bertazza L, Zane M, Mucignat-Caretta C, Bulfone A, Pennelli G, Casal Ide E, Pelizzo MR, Mantero F, Moro S, Mian C (2014) Prevalence, tumorigenic role, and biochemical implications of rare BRAF alterations. Thyroid 24:809–819CrossRefPubMedGoogle Scholar
  21. 21.
    Rubin B, Monticelli H, Redaelli M, Mucignat C, Barollo S, Bertazza L, Mian C, Betterle C, Iacobone M, Fassina A, Boscaro M, Pezzani R, Mantero F (2015) Mitogen-activated protein kinase pathway: genetic analysis of 95 adrenocortical tumors. Cancer Investig 33:526–531CrossRefGoogle Scholar
  22. 22.
    Hienonen T, Salovaara R, Mecklin JP, Jarvinen H, Karhu A, Aaltonen LA (2006) Preferential amplification of AURKA 91 a (Ile31) in familial colorectal cancers. Int J Cancer 118:505–508CrossRefPubMedGoogle Scholar
  23. 23.
    Failes TW, Mitic G, Abdel-Halim H, Po’uha ST, Liu M, Hibbs DE, Kavallaris M (2012) Evolution of resistance to aurora kinase B inhibitors in leukaemia cells. PLoS One 7:e30734CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barollo S, Pezzani R, Cristiani A, Bertazza L, Rubin B, Bulfone A, Pelizzo MR, Torresan F, Mantero F, Pennelli G, Moro S, Mian C (2013) Functional significance of the novel H-RAS gene mutation M72I in a patient with medullary thyroid cancer. Exp Clin Endocrinol Diabetes 121:546–550CrossRefPubMedGoogle Scholar
  25. 25.
    Quartuccio SM, Schindler K (2015) Functions of aurora kinase C in meiosis and cancer. Front Cell Dev Biol 3:50CrossRefPubMedGoogle Scholar
  26. 26.
    Zekri A, Lesan V, Ghaffari SH, Tabrizi MH, Modarressi MH (2012) Gene amplification and overexpression of aurora-C in breast and prostate cancer cell lines. Oncol Res 20:241–250CrossRefPubMedGoogle Scholar
  27. 27.
    Wan XB, Long ZJ, Yan M, Xu J, Xia LP, Liu L, Zhao Y, Huang XF, Wang XR, Zhu XF, Hong MH, Liu Q (2008) Inhibition of aurora-a suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis 29:1930–1937CrossRefPubMedGoogle Scholar
  28. 28.
    Huang XF, Luo SK, Xu J, Li J, Xu DR, Wang LH, Yan M, Wang XR, Wan XB, Zheng FM, Zeng YX, Liu Q (2008) Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in aurora-A-high acute myeloid leukemia. Blood 111:2854–2865CrossRefPubMedGoogle Scholar
  29. 29.
    Leong L, Madame Curie Bioscience Database, Landes Bioscience, Austin (TX)Google Scholar
  30. 30.
    Seymour JF, Kim DW, Rubin E, Haregewoin A, Clark J, Watson P, Hughes T, Dufva I, Jimenez JL, Mahon FX, Rousselot P, Cortes J, Martinelli G, Papayannidis C, Nagler A, Giles FJ (2014) A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Cancer J 4:e238CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wagnerova H, Lazurova I, Felsoci M (2013) Adrenal metastases. Bratisl Lek Listy 114:237–240PubMedGoogle Scholar
  32. 32.
    Tavanti E, Sero V, Vella S, Fanelli M, Michelacci F, Landuzzi L, Magagnoli G, Versteeg R, Picci P, Hattinger CM, Serra M (2013) Preclinical validation of aurora kinase-targeting drugs in osteosarcoma. Br J Cancer 109:2607–2618CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Baldini E, Arlot-Bonnemains Y, Sorrenti S, Mian C, Pelizzo MR, De Antoni E, Palermo S, Morrone S, Barollo S, Nesca A, Moretti CG, D’Armiento M, Ulisse S (2011) Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC-derived cell line TT. BMC Cancer 11:411CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nair JS, Ho AL, Tse AN, Coward J, Cheema H, Ambrosini G, Keen N, Schwartz GK (2009) Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 20:2218–2228CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936CrossRefPubMedGoogle Scholar
  36. 36.
    Samadi A, Loo P, Mukerji R, O’Donnell G, Tong X, Timmermann BN, Cohen MS (2009) A novel HSP90 modulator with selective activity against thyroid cancers in vitro. Surgery 146:1196–1207CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gizatullin F, Yao Y, Kung V, Harding MW, Loda M, Shapiro GI (2006) The aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res 66:7668–7677CrossRefPubMedGoogle Scholar
  38. 38.
    Yang H, He L, Kruk P, Nicosia SV, Cheng JQ (2006) Aurora-a induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 119:2304–2312CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raffaele Pezzani
    • 1
    Email author
  • Beatrice Rubin
    • 1
  • Loris Bertazza
    • 1
  • Marco Redaelli
    • 2
  • Susi Barollo
    • 1
  • Halenya Monticelli
    • 1
  • Enke Baldini
    • 3
  • Caterina Mian
    • 1
  • Carla Mucignat
    • 2
  • Carla Scaroni
    • 1
  • Franco Mantero
    • 1
  • Salvatore Ulisse
    • 3
  • Maurizio Iacobone
    • 4
  • Marco Boscaro
    • 1
  1. 1.Endocrinology Unit, Department of MedicineUniversity of PadovaPadovaItaly
  2. 2.Department of Molecular MedicineUniversity of PadovaPadovaItaly
  3. 3.Department of Experimental MedicineUniversity of Roma “La Sapienza”RomeItaly
  4. 4.Endocrine Surgery Unit, Department of Surgical and Gastroenterological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations