Skip to main content

Advertisement

Log in

Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Lenvatinib is an oral, multiple receptor tyrosine kinase inhibitor. Preclinical drug metabolism studies showed unique metabolic pathways for lenvatinib in monkeys and rats. A human mass balance study demonstrated that lenvatinib related material is mainly excreted via feces with a small fraction as unchanged parent drug, but little is reported about its metabolic fate. The objective of the current study was to further elucidate the metabolic pathways of lenvatinib in humans and to compare these results to the metabolism in rats and monkeys. To this end, we used plasma, urine and feces collected in a human mass balance study after a single 24 mg (100 μCi) oral dose of 14C-lenvatinib. Metabolites of 14C-lenvatinib were identified using liquid chromatography (high resolution) mass spectrometry with off-line radioactivity detection. Close to 50 lenvatinib-related compounds were detected. In humans, unchanged lenvatinib accounted for 97 % of the radioactivity in plasma, and comprised 0.38 and 2.5 % of the administered dose excreted in urine and feces, respectively. The primary biotransformation pathways of lenvatinib were hydrolysis, oxidation and hydroxylation, N-oxidation, dealkylation and glucuronidation. Various combinations of these conversions with modifications, including hydrolysis, gluthathione/cysteine conjugation, intramolecular rearrangement and dimerization, were observed. Some metabolites seem to be unique to the investigated species (human, rat, monkey). Because all lenvatinib metabolites in human plasma were at very low levels compared to lenvatinib, only lenvatinib is expected to contribute to the pharmacological effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-ME:

2-mercaptoethanol

ACN:

Acetonitrile

HPLC:

High performance liquid chromatography

HR-MS:

High-resolution mass spectrometry

LC-MS:

Liquid chromatography mass spectrometry

LLOQ:

Lower limit of quantitation

LOD:

Limit of detection

LSC:

Liquid scintillation counting

MeOH:

Methanol

TRA:

Total radioactivity

References

  1. Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, Minoshima Y, Iwata M, Funahashi Y (2014) Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:638747. doi:10.1155/2014/638747

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamamoto Y, Matsui J, Matsushima T, Obaishi H, Miyazaki K, Nakamura K, Tohyama O, Semba T, Yamaguchi A, Hoshi SS, Mimura F, Haneda T, Fukuda Y, Kamata J, Takahashi K, Matsukura M, Wakabayashi T, Asada M, Nomoto K, Watanabe T, Dezso Z, Yoshimatsu K, Funahashi Y, Tsuruoka A (2014) Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 6:18. doi:10.1186/2045-824X-6-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14(17):5459–5465. doi:10.1158/1078-0432.CCR-07-5270

    Article  CAS  PubMed  Google Scholar 

  4. Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, Uenaka T, Asada M (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122(3):664–671. doi:10.1002/ijc.23131

    Article  CAS  PubMed  Google Scholar 

  5. Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, Tsuruoka A (2013) Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 340(1):97–103. doi:10.1016/j.canlet.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  6. Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, McCaffrey JC, Shah MH, Bodenner DL, Topliss D, Andresen C, O’Brien JP, Ren M, Funahashi Y, Allison R, Elisei R, Newbold K, Licitra LF, Sherman SI, Ball DW (2015) A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer 121(16):2749–2756. doi:10.1002/cncr.29395

    Article  CAS  PubMed  Google Scholar 

  7. Hong DS, Kurzrock R, Falchook GS, Andresen C, Kwak J, Ren M, Xu L, George GC, Kim KB, Nguyen LM, O’Brien JP, Nemunaitis J (2015) Phase 1b study of lenvatinib (E7080) in combination with temozolomide for treatment of advanced melanoma. Oncotarget 6(40):43127–43134. doi:10.18632/oncotarget.5756

    PubMed  PubMed Central  Google Scholar 

  8. Hong DS, Kurzrock R, Wheler JJ, Naing A, Falchook GS, Fu S, Kim KB, Davies MA, Nguyen LM, George GC, Xu L, Shumaker R, Ren M, Mink J, Bedell C, Andresen C, Sachdev P, O’Brien JP, Nemunaitis J (2015) Phase I dose-escalation study of the multikinase inhibitor lenvatinib in patients with advanced solid tumors and in an expanded cohort of patients with melanoma. Clin Cancer Res 21(21):4801–4810. doi:10.1158/1078-0432.CCR-14-3063

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda M, Okusaka T, Mitsunaga S, Uneo H, Tamai T, Suzuki T, Hayato S, Kadowaki T, Okita K, Kumada H (2015) Safety and pharmacokinetics of lenvatinib in patients with advanced hepatocellular carcinoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-15-1354

    Google Scholar 

  10. Molina AM, Hutson TE, Larkin J, Gold AM, Wood K, Carter D, Motzer R, Michaelson MD (2014) A phase 1b clinical trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Cancer Chemother Pharmacol 73(1):181–189. doi:10.1007/s00280-013-2339-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, Jassem J, Zolnierek J, Maroto JP, Mellado B, Melichar B, Tomasek J, Kremer A, Kim HJ, Wood K, Dutcus C, Larkin J (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16(15):1473–1482. doi:10.1016/S1470-2045(15)00290-9

    Article  CAS  PubMed  Google Scholar 

  12. Nishio M, Horai T, Horiike A, Nokihara H, Yamamoto N, Takahashi T, Murakami H, Yamamoto N, Koizumi F, Nishio K, Yusa W, Koyama N, Tamura T (2013) Phase 1 study of lenvatinib combined with carboplatin and paclitaxel in patients with non-small-cell lung cancer. Br J Cancer 109(3):538–544. doi:10.1038/bjc.2013.374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu J, Sherman SI (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372(7):621–630. doi:10.1056/NEJMoa1406470

    Article  PubMed  Google Scholar 

  14. Mayor S (2015) Lenvatinib improves survival in refractory thyroid cancer. Lancet Oncol 16(3):e110. doi:10.1016/S1470-2045(15)70066-5

    Article  PubMed  Google Scholar 

  15. Inoue K, Asai N, Mizuo H, Fukuda K, Kusano K, Yoshimura T (2012) Unique metabolic pathway of [(14)C]lenvatinib after oral administration to male cynomolgus monkey. Drug Metab Dispos 40(4):662–670. doi:10.1124/dmd.111.043281

    Article  CAS  PubMed  Google Scholar 

  16. Dubbelman AC, Rosing H, Nijenhuis C, Huitema AD, Mergui-Roelvink M, Gupta A, Verbel D, Thompson G, Shumaker R, Schellens JH, Beijnen JH (2015) Pharmacokinetics and excretion of (14)C-lenvatinib in patients with advanced solid tumors or lymphomas. Invest New Drugs 33(1):233–240. doi:10.1007/s10637-014-0181-7

    Article  CAS  PubMed  Google Scholar 

  17. Zhu M, Zhao W, Vazquez N, Mitroka JG (2005) Analysis of low level radioactive metabolites in biological fluids using high-performance liquid chromatography with microplate scintillation counting: method validation and application. J Pharm Biomed Anal 39(1–2):233–245. doi:10.1016/j.jpba.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Dubbelman AC, Rosing H, Schellens JH, Beijnen JH (2011) Bioanalytical aspects of clinical mass balance studies in oncology. Bioanalysis 3(23):2637–2655. doi:10.4155/bio.11.276

    Article  CAS  PubMed  Google Scholar 

  19. Inoue K, Mizuo H, Kawaguchi S, Fukuda K, Kusano K, Yoshimura T (2014) Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase. Drug Metab Dispos. doi:10.1124/dmd.114.058073

    Google Scholar 

  20. Dubbelman AC, Rosing H, Thijssen B, Gebretensae A, Lucas L, Chen H, Shumaker R, Schellens JH, Beijnen JH (2012) Development and validation of LC-MS/MS assays for the quantification of E7080 and metabolites in various human biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 887–888:25–34. doi:10.1016/j.jchromb.2012.01.004

    Article  PubMed  Google Scholar 

  21. US Food and Drug Administration (2008) Guidance for industry: safety testing of drug metabolites, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research http://www.fda.gov/OHRMS/DOCKETS/98fr/FDA-2008-D-0065-GDL.pdf. Accessed at: 06-01-2016

  22. Pretsch E, Bühlmann P, Affolter C (2013) Structure determination of organic compounds: tables of spectral data. Mass Spectrometry, 3rd edn. Springer Science & Business Media

  23. Levsen K, Schiebel HM, Behnke B, Dotzer R, Dreher W, Elend M, Thiele H (2005) Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J Chromatogr A 1067(1–2):55–72

    Article  CAS  PubMed  Google Scholar 

  24. Diamond S, Boer J, Maduskuie TP Jr, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38(8):1277–1285. doi:10.1124/dmd.110.032375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients who gave their valuable time to participate in the human mass balance study.

Authorship contributions

Participated in research design:

Dubbelman, Jansen, Mizuo, Critchley, Shumaker, Nijenhuis, Rosing

Conducted experiments:

Dubbelman, Jansen, Nijenhuis

Performed data analysis:

Dubbelman, Nijenhuis

Wrote or contributed to the writing of the manuscript:

Dubbelman, Jansen, Mizuo, Kawaguchi, Nijenhuis, Rosing, Schellens, Beijnen

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne-Charlotte Dubbelman or Cynthia M. Nijenhuis.

Ethics declarations

Conflict of interest

Hitoshi Mizuo and Shinki Kawaguchi are employees of Eisai Co. Ltd., David Critchley is an employee of Eisai Ltd. and Robert Shumaker in an employee of Eisai Inc. All other authors declare no conflict of interest.

Additional information

This work was financially supported by Eisai Co. Ltd.

Anne-Charlotte Dubbelman and Cynthia M. Nijenhuis are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

High-resolution spectra and proposed fragmentation of the most abundant metabolites (MET4, MET27, M2, M3’ and M2’) (DOCX 96 kb)

Supplementary Data 1

Identification of lenvatinib metabolites in humans, rat and monkey (DOCX 20.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubbelman, AC., Nijenhuis, C.M., Jansen, R.S. et al. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison. Invest New Drugs 34, 300–318 (2016). https://doi.org/10.1007/s10637-016-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0342-y

Keywords

Navigation