Advertisement

Investigational New Drugs

, Volume 34, Issue 4, pp 515–521 | Cite as

Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells

  • Onat Kadioglu
  • Thomas Efferth
SHORT REPORT

Summary

Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. “WGQWPYHC” deserves further analysis for targeted therapy of TCTP-expressing tumor cells.

Graphical abstract

Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins

Keywords

Cancer Fortilin Histamine releasing factor Leukemia Molecular docking Peptide aptamer TCTP 

Notes

Compliance with ethical standards

Conflict of interest

We declare that there is no conflict of interest.

References

  1. 1.
    Michor F, Nowak MA, Iwasa Y (2006) Evolution of resistance to cancer therapy. Curr Pharm Des 12(3):261–271CrossRefPubMedGoogle Scholar
  2. 2.
    Galmarini CM, Galmarini FC (2003) Multidrug resistance in cancer therapy: role of the microenvironment. Curr Opin Investig Drugs 4(12):1416–1421PubMedGoogle Scholar
  3. 3.
    Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94(1):15–21CrossRefPubMedGoogle Scholar
  4. 4.
    Nishina T, Yamaguchi N, Gohda J, Semba K, Inoue J (2009) NIK is involved in constitutive activation of the alternative NF-kappaB pathway and proliferation of pancreatic cancer cells. Biochem Biophys Res Commun 388(1):96–101. doi: 10.1016/j.bbrc.2009.07.125 CrossRefPubMedGoogle Scholar
  5. 5.
    Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, Shou J, Bissell MJ, Osborne CK, Schiff R (2011) Beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast cancer research: BCR 13(4):R84. doi: 10.1186/bcr2936 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    He H, Chen J, Xie WP, Cao S, Hu HY, Yang LQ, Gong B (2013) Ketamine used as an acesodyne in human breast cancer therapy causes an undesirable side effect, upregulating anti-apoptosis protein bcl-2 expression. Genet Mol Res 12(2):1907–1915. doi: 10.4238/2013.January.4.7 CrossRefPubMedGoogle Scholar
  7. 7.
    Voelcker V, Sticherling M (2011) Acneiform skin lesions as a side effect of therapy with EGFR (epidermal growth factor receptor) inhibitors in Colon Cancer. J Dtsch Dermatol Ges 9:220–220Google Scholar
  8. 8.
    Gamboa EO, Rehmus EH, Haller N (2010) Fournier’s gangrene as a possible side effect of bevacizumab therapy for resected colorectal cancer. Clin Colorectal Canc 9(1):55–60. doi: 10.3816/Ccc.2010.N.008 CrossRefGoogle Scholar
  9. 9.
    Repetto-Llamazares AHV, Larsen RH, Patzke S, Fleten KG, Didierlaurent D, Pichard A, Pouget JP, Dahle J (2015) Targeted cancer therapy with a novel anti-CD37 Beta-Particle Emitting radioimmunoconjugate for treatment of non-Hodgkin Lymphoma. PLoS One 10(6). doi: 10.1371/journal.pone.0128816
  10. 10.
    Liu H, Lu J, Hua Y, Zhang P, Liang Z, Ruan L, Lian C, Shi H, Chen K, Tu Z (2015) Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis 6. doi: 10.1038/Cddis.2014.555
  11. 11.
    Carneiro BA, Altman JK, Kaplan JB, Ossenkoppele G, Swords R, Platanias LC, Giles FJ (2015) Targeted therapy of acute myeloid leukemia. Expert Rev Anticancer Ther 15(4):399–413. doi: 10.1586/14737140.2015.1004316 CrossRefPubMedGoogle Scholar
  12. 12.
    Panathur N, Dalimba U, Koushik PV, Alvala M, Yogeeswari P, Sriram D, Kumar V (2013) Identification and characterization of novel indole based small molecules as anticancer agents through SIRT1 inhibition. Eur J Med Chem 69:125–138. doi: 10.1016/j.ejmech.2013.08.018 CrossRefPubMedGoogle Scholar
  13. 13.
    Gurova K (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5(10):1685–1704. doi: 10.2217/fon.09.127 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seneci P (2012) Small molecules as pro-apoptotic anticancer agents. Pharm Pat Anal 1(4):483–505. doi: 10.4155/ppa.12.41 CrossRefPubMedGoogle Scholar
  15. 15.
    Mendelsohn J (2003) Antibody-mediated EGF receptor blockade as an anticancer therapy: from the laboratory to the clinic. Cancer Immunol Immunother: CII 52(5):342–346. doi: 10.1007/s00262-002-0354-7 PubMedGoogle Scholar
  16. 16.
    Kim DG, Jin Y, Jin J, Yang H, Joo KM, Lee WS, Shim SR, Kim SW, Yoo J, Lee SH, Yoo JS, Nam DH (2015) Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis. MAbs 7(6):1195–1204. doi: 10.1080/1942s0862.2015.1086854 CrossRefPubMedGoogle Scholar
  17. 17.
    Kadioglu O, Malczyk AH, Greten HJ, Efferth T (2015) Aptamers as a novel tool for diagnostics and therapy. Invest New Drug 33(2):513–520. doi: 10.1007/s10637-015-0213-y CrossRefGoogle Scholar
  18. 18.
    Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Edit 48(15):2672–2689. doi: 10.1002/anie.200804643 CrossRefGoogle Scholar
  19. 19.
    Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. doi: 10.1016/j.mad.2006.11.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Rhinehardt KL, Mohan RV, Srinivas G (2015) Computational modeling of peptide-aptamer binding. Methods Mol Biol 1268:313–333. doi: 10.1007/978-1-4939-2285-7_14 CrossRefPubMedGoogle Scholar
  21. 21.
    Barbas AS, Mi J, Clary BM, White RR (2010) Aptamer applications for targeted cancer therapy. Future Oncol 6(7):1117–1126. doi: 10.2217/fon.10.67 CrossRefPubMedGoogle Scholar
  22. 22.
    Sa LT, Simmons S, Missailidis S, da Silva MI, Santos-Oliveira R (2013) Aptamer-based nanoparticles for cancer targeting. J Drug Target 21(5):427–434. doi: 10.3109/1061186X.2012.761222 CrossRefPubMedGoogle Scholar
  23. 23.
    Westermaier Y, Barril X, Scapozza L (2015) Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods 71:44–57. doi: 10.1016/j.ymeth.2014.08.001 CrossRefPubMedGoogle Scholar
  24. 24.
    Cerqueira NM, Gesto D, Oliveira EF, Santos-Martins D, Bras NF, Sousa SF, Fernandes PA, Ramos MJ (2015) Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys 582:56–67. doi: 10.1016/j.abb.2015.05.011 CrossRefPubMedGoogle Scholar
  25. 25.
    Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. doi: 10.1007/978-1-4939-2269-7_19 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2015) PubChem substance and compound databases. Nucleic Acids Res. doi: 10.1093/nar/gkv951 Google Scholar
  27. 27.
    Ghasemi JB, Shiri F, Pirhadi S, Heidari Z (2015) Discovery of new potential antimalarial compounds using virtual screening of ZINC database. Comb Chem High Throughput Screen 18(2):227–234CrossRefPubMedGoogle Scholar
  28. 28.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. doi: 10.1093/nar/gkr777 CrossRefPubMedGoogle Scholar
  29. 29.
    Duprez W, Bachu P, Stoermer MJ, Tay S, McMahon RM, Fairlie DP, Martin JL (2015) Virtual screening of peptide and peptidomimetic fragments targeted to inhibit bacterial dithiol oxidase DsbA. PLoS One 10(7):e0133805. doi: 10.1371/journal.pone.0133805 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi: 10.1002/jcc.21334 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Park H, Lee J, Lee S (2006) Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 65(3):549–554. doi: 10.1002/prot.21183 CrossRefPubMedGoogle Scholar
  32. 32.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi: 10.1002/Jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al] Chapter 8:Unit 8 14. doi: 10.1002/0471250953.bi0814s24
  34. 34.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662. doi: 10.1002/(Sici)1096-987x(19981115)19:14<1639::Aid-Jcc10>3.0.Co;2-B CrossRefGoogle Scholar
  35. 35.
    Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian Genetic Algorithm for Flexible Ligand-Receptor Docking. J Comput Chem 31(9):1911–1918. doi: 10.1002/jcc.21478 PubMedGoogle Scholar
  36. 36.
    Wang T (2008) Function and dynamics of aptamers: A case study on the malachite. Ph.D. thesis, Iowa State University, Ames, IowaGoogle Scholar
  37. 37.
    Chushak Y, Stone MO (2009) In silico selection of RNA aptamers. Nucleic Acids Res 37(12). doi: 10.1093/nar/gkp408
  38. 38.
    Aubin-Tam ME, Appleyard DC, Ferrari E, Garbin V, Fadiran OO, Kunkel J, Lang MJ (2011) Adhesion through single peptide aptamers. J Phys Chem A 115(16):3657–3664. doi: 10.1021/jp1031493 CrossRefPubMedGoogle Scholar
  39. 39.
    Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struc Biol 16(3):368–373. doi: 10.1016/j.sbi.2006.04.004 CrossRefGoogle Scholar
  40. 40.
    Pei JM (2008) Multiple protein sequence alignment. Curr Opin Struc Biol 18(3):382–386. doi: 10.1016/j.sbi.2008.03.007 CrossRefGoogle Scholar
  41. 41.
    Tsubery H, Mironchik M, Fridkin M, Shechter Y (2004) Prolonging the action of protein and peptide drugs by a novel approach of reversible polyethylene glycol modification. J Biol Chem 279(37):38118–38124. doi: 10.1074/jbc.M405155200 CrossRefPubMedGoogle Scholar
  42. 42.
    Grun J, Revell JD, Conza M, Wennemers H (2006) Peptide-polyethylene glycol conjugates: synthesis and properties of peptides bearing a C-terminal polyethylene glycol chain. Bioorgan Med Chem 14(18):6197–6201. doi: 10.1016/j.bmc.2006.05.079 CrossRefGoogle Scholar
  43. 43.
    Acunzo J, Baylot V, So A, Rocchi P (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40(6):760–769. doi: 10.1016/j.ctrv.2014.02.007 CrossRefPubMedGoogle Scholar
  44. 44.
    Miao X, Chen YB, Xu SL, Zhao T, Liu JY, Li YR, Wang J, Zhang J, Guo GZ (2013) TCTP overexpression is associated with the development and progression of glioma. Tumor Biol 34(6):3357–3361. doi: 10.1007/s13277-013-0906-9 CrossRefGoogle Scholar
  45. 45.
    Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell B 36(3):379–385. doi: 10.1016/S1357-2725(03)00213-9 CrossRefGoogle Scholar
  46. 46.
    Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J, Moras D, Amson R, Telerman A (2004) Translationally controlled tumor protein is a target of tumor reversion. P Natl Acad Sci USA 101(43):15364–15369. doi: 10.1073/pnas.0406776101 CrossRefGoogle Scholar
  47. 47.
    Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G, Rubartelli A, Garaci E (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317(17):2479–2489. doi: 10.1016/j.yexcr.2011.07.012 CrossRefPubMedGoogle Scholar
  48. 48.
    Tsarova K, Yarmola EG, Bubb MR (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584(23):4756–4760. doi: 10.1016/j.febslet.2010.10.054 CrossRefPubMedGoogle Scholar
  49. 49.
    Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang XF (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788. doi: 10.1038/sj.onc.1208666 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jung J, Kim M, Kim MJ, Kim J, Moon J, Lim JS, Kim M, Lee K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na,K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279(48):49868–49875. doi: 10.1074/jbc.M400895200 CrossRefPubMedGoogle Scholar
  51. 51.
    Rho SB, Lee JH, Park MS, Byun HJ, Kang S, Seo SS, Kim JY, Park SY (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35. doi: 10.1016/j.febslet.2010.11.014 CrossRefPubMedGoogle Scholar
  52. 52.
    Yoon T, Jung J, Kim M, Lee KM, Choi EC, Lee K (2000) Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch Biochem Biophys 384(2):379–382. doi: 10.1006/abbi.2000.2108 CrossRefPubMedGoogle Scholar
  53. 53.
    Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271PubMedGoogle Scholar
  54. 54.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminf 3:33. doi: 10.1186/1758-2946-3-33 CrossRefGoogle Scholar
  55. 55.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 27-38CrossRefPubMedGoogle Scholar
  56. 56.
    Cui Q, Lim SK, Zhao B, Hoffmann FM (2005) Selective inhibition of TGF-beta responsive genes by smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 24(24):3864–3874. doi: 10.1038/sj.onc.1208556 CrossRefPubMedGoogle Scholar
  57. 57.
    O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem/FEBS 267(17):5421–5426CrossRefGoogle Scholar
  58. 58.
    Kuete V, Wiench B, Hegazy ME, Mohamed TA, Fankam AG, Shahat AA, Efferth T (2012) Antibacterial activity and cytotoxicity of selected Egyptian medicinal plants. Planta Med 78(2):193–199. doi: 10.1055/s-0031-1280319 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany

Personalised recommendations