Advertisement

Investigational New Drugs

, Volume 33, Issue 4, pp 810–815 | Cite as

Co-administration of antigen with chemokine MCP-3 or MDC/CCL22 enhances DNA vaccine potency

  • Xinmei Xie
  • Lin Wang
  • Wenliang Yang
  • Ruishuang Yu
  • Qingli Li
  • Xiaobin Pang
PRECLINICAL STUDIES

Abstract

We evaluated the utility of chemokine MCP-3 and MDC/CCL22 as molecular adjuvants of DNA vaccines for botulinum neurotoxin serotype A (BoNT/A) in a Balb/c mouse model. Notably, the immunogenicity of the DNA vaccine against BoNT/A was not enhanced using a fusion of the AHc-C antigen with the MCP-3 or MDC/CCL22. Nevertheless, the potency of the DNA vaccine was significantly modulated and enhanced by co-administration of the AHc-C antigen with MCP-3 or MDC/CCL22. This strategy elicited high levels of humoral immune responses and protection against BoNT/A. The enhanced potency was further boosted by co-administration of the AHc-C antigen with both MCP-3 and MDC/CCL22 in Balb/c mice, but not by co-administration of AHc-C antigen with the MCP-3-MDC/CCL22 fusion. Co-immunization with both the MCP-3 and MDC/CCL22 constructs induced the highest levels of humoral immunity and protective potency against BoNT/A. Our results indicated that MCP-3 and MDC/CCL22 are effective molecular adjuvants of the immune responses induced by the AHc-C-expressing DNA vaccine when delivered by co-administration of the individual chemokines, but not when delivered in the form of a chemokine/antigen fusion. Thus, we describe an alternative strategy to the design and optimization of DNA vaccine constructs based on co-administration of the antigen with the chemokine rather than in the form of a chemokine/antigen fusion.

Keywords

DNA vaccine MCP-3 MDC/CCL22 Co-administration Molecular adjuvant 

Abbreviations

MCP-3

monocyte chemotactic protein 3

MDC/CCL22

macrophage-derived chemokine

BoNT/A

botulinum neurotoxin serotype A

AHc-C

C-terminal quarter of the heavy chain of botulinum neurotoxin serotype A

APCs

antigen-presenting cells

DCs

dendritic cells

IFA

immunofluorescence assay

Notes

Acknowledgments

The authors gratefully acknowledge the support provided by the Chinese National Natural Science Fund No. 81273652.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Dhama K, Mahendran M, Gupta PK, Rai A (2008) DNA vaccines and their applications in veterinary practice: current perspectives. Vet Res Commun 32(5):341–356PubMedCrossRefGoogle Scholar
  2. 2.
    Ulmer JB, Wahren B, Liu MA (2006) Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 12(5):216–222PubMedCrossRefGoogle Scholar
  3. 3.
    Fu J, Zhao B, Dong Z, Sun Y, Luan H, Shen X, Gao X, Gong F, Li S, Song H (2012) Heparanase DNA vaccine delivered by electroporation induces humoral immunity and cytoimmunity in animal models. Vaccine 30(12):2187–2196PubMedCrossRefGoogle Scholar
  4. 4.
    Rusnak JM, Smith LA (2009) Botulinum neurotoxin vaccines: past history and recent developments. Hum Vaccin 5(12):794–805PubMedCrossRefGoogle Scholar
  5. 5.
    Smith LA, Rusnak JM (2007) Botulinum neurotoxin vaccines: past, present, and future. Crit Rev Immunol 27(4):303–318PubMedCrossRefGoogle Scholar
  6. 6.
    Middlebrook JL (2005) Production of vaccines against leading biowarfare toxins can utilize DNA scientific technology. Adv Drug Deliv Rev 57(9):1415–1423PubMedCrossRefGoogle Scholar
  7. 7.
    Villarreal D, Talbott K, Choo D, Shedlock D, Weiner D (2013) Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 12(5):537–554PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19(12):568–574PubMedCrossRefGoogle Scholar
  9. 9.
    Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman D (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7(2):175–191PubMedCrossRefGoogle Scholar
  11. 11.
    Kutzler MA, Weiner DB (2004) Developing DNA vaccines that call to dendritic cells. J Clin Investig 114(9):1241–1244PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Liu M, Wahren B, Karlsson HG (2006) DNA vaccines: recent developments and future possibilities. Hum Gene Ther 17(11):1051–1061PubMedCrossRefGoogle Scholar
  13. 13.
    Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496PubMedCrossRefGoogle Scholar
  14. 14.
    Negash T, Liman M, Rautenschlein S (2013) Mucosal application of cationic poly(D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 31(36):3656–3662PubMedCrossRefGoogle Scholar
  15. 15.
    Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW (2002) DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 100(4):1153–1159PubMedCrossRefGoogle Scholar
  16. 16.
    Guo J, Fan M, Sun J, Jia R (2009) Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int Immunopharmacol 9(7–8):925–930PubMedCrossRefGoogle Scholar
  17. 17.
    Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW (1999) Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17(3):253–258PubMedCrossRefGoogle Scholar
  18. 18.
    Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS, Jackson SS, Gorgone DA, Lifton MA, Letvin NL, Barouch DH (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114(9):1334–1342PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Yu Y, Ma Y, Chen Y, Gong Z, Wang S, Yu W, Sun Z (2011) Binding activity and immunogenic characterization of recombinant C-terminal quarter and half of the heavy chain of botulinum neurotoxin serotype A. Hum Vaccins 7(10):1090–1095CrossRefGoogle Scholar
  20. 20.
    Ma Y, An H, Wei X, Xu Q, Yu Y, Sun Z (2013) Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant. Hum Vaccin Immunother 9(2):242–249PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Saade F (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11(2):189–209PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hamzaoui K, Hamzaoui A, Borhani-Haghighi A, Kaabachi W (2014) Increased interleukin 33 in patients with neuro-Behcet’s disease: correlation with MCP-1 and IP-10 chemokines. Cell Mol Immunol 11:613–616PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Mihret A, Bekele Y, Bobosha K, Kidd M (2013) Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 66(4):357–365PubMedCrossRefGoogle Scholar
  24. 24.
    Yu Y, Bai J, Sun Z, Wang S, Zhao M, Chen A, Wang W, Chang Q, Liu S, Qiu W (2013) Effective DNA epitope chimeric vaccines for Alzheimer’s disease using a toxin-derived carrier protein as a molecular adjuvant. Clin Immunol 149(1):11–24PubMedCrossRefGoogle Scholar
  25. 25.
    Kim JJ, Yang JS, Dentchev T, Dang K, Weiner DB (2000) Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 20(5):487–498PubMedCrossRefGoogle Scholar
  26. 26.
    Frauenschuh A, DeVico AL, Lim SP, Gallo RC, Garzino-Demo A (2004) Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine 23(4):546–554PubMedCrossRefGoogle Scholar
  27. 27.
    Song R, Liu S, Leong KW (2007) Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 15(5):1007–1015PubMedCentralPubMedGoogle Scholar
  28. 28.
    Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW (2002) Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20(9–10):1466–1474PubMedCrossRefGoogle Scholar
  29. 29.
    Li N, Yu YZ, Yu WY, Sun ZW (2011) Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 33(1):211–219PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J, Xing Z (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 25(7):1342–1352PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xinmei Xie
    • 1
  • Lin Wang
    • 1
  • Wenliang Yang
    • 1
  • Ruishuang Yu
    • 1
  • Qingli Li
    • 1
  • Xiaobin Pang
    • 1
  1. 1.Pharmaceutical InstituteHenan UniversityKaifengChina

Personalised recommendations