Investigational New Drugs

, Volume 33, Issue 3, pp 541–554 | Cite as

Combretastatin A-4 derived imidazoles show cytotoxic, antivascular, and antimetastatic effects based on cytoskeletal reorganisation

  • Katharina Mahal
  • Bernhard Biersack
  • Henrike Caysa
  • Rainer Schobert
  • Thomas Mueller


Introduction Combretastatin A-4 (CA-4) is a natural cis-stilbene which interferes with the cellular tubulin dynamics and which selectively destroys tumour blood vessels. Its pharmacological shortcomings such as insufficient chemical stability, water solubility, and cytotoxicity can be remedied by employing its imidazole derivatives. Methods We studied 11 halogenated imidazole derivatives of CA-4 for their effects on the microtubule and actin cytoskeletons of cancer and endothelial cells and on the propensity of these cells to migrate across tissue barriers or to form blood vessel-like tubular structures. Results A series of N-methyl-4-aryl-5-(4-ethoxyphenyl)-imidazoles proved far more efficacious than the lead CA-4 in growth inhibition assays against CA-4-resistant HT-29 colon carcinoma cells and generally more selective for cancer over nonmalignant cells. Et-brimamin (6), the most active compound, inhibited the growth of various cancer cell lines with IC50 (72 h) values in the low nanomolar range. Active imidazoles such as 6 reduced the motility and invasiveness of cancer cells by initiating the formation of actin stress fibres and focal adhesions as a response to the extensive microtubule disruption. The antimetastatic properties were ascertained in 3D-transwell migration assays which simulated the transgression of highly invasive melanoma cells through the extracellular matrix of solid tumours and through the endothelium of blood vessels. The studied imidazoles exhibited vascular-disrupting effects also against tumour xenografts that are refractory to CA-4. They were also less toxic and better tolerated by mice. Conclusions We deem the new imidazoles promising drug candidates for combination regimens with antiangiogenic VEGFR inhibitors.


Combretastatin A-4 Imidazoles Vascular-disrupting agents (VDA) Antimetastatic activity Transwell invasion assay Trans-endothelium migration assay CAM assay 



We are indebted to Dr. Florenz Sasse (Helmholtz Centre for Infection Research, Braunschweig, Germany) for assisting with fluorescence microscopy and to Franziska Reipsch (Department of Internal Medicine IV, Halle) for technical assistance.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10637_2015_215_MOESM1_ESM.doc (368 kb)
ESM 1 (DOC 367 kb)


  1. 1.
    Pettit G, Singh S, Hamel E et al (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45:209–211CrossRefPubMedGoogle Scholar
  2. 2.
    Tron GC, Pirali T, Sorba G et al (2006) Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem 49:3033–3044. doi: 10.1021/jm0512903 CrossRefPubMedGoogle Scholar
  3. 3.
    Kanthou C, Tozer GM (2007) Tumour targeting by microtubule-depolymerising vascular disrupting agents. Expert Opin Ther Targets 11:1443–1457. doi: 10.1517/14728222.11.11.1443 CrossRefPubMedGoogle Scholar
  4. 4.
    Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435. doi: 10.1038/nrc1628 CrossRefPubMedGoogle Scholar
  5. 5.
    Kanthou C, Tozer GM (2009) Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies: microtubule depolymerizing vascular disrupting agents. Int J Exp Pathol 90:284–294. doi: 10.1111/j.1365-2613.2009.00651.x CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Nguyen TL, McGrath C, Hermone AR et al (2005) A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 48:6107–6116. doi: 10.1021/jm050502t CrossRefPubMedGoogle Scholar
  7. 7.
    Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5:2963–2969. doi: 10.1158/1535-7163.MCT-06-0319 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9086. doi: 10.1038/sj.onc.1207233 CrossRefPubMedGoogle Scholar
  9. 9.
    Kanthou C, Greco O, Stratford A et al (2004) The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death. Am J Pathol 165:1401–1411CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Kanthou C (2002) The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood 99:2060–2069. doi: 10.1182/blood.V99.6.2060 CrossRefPubMedGoogle Scholar
  11. 11.
    Quan H, Xu Y, Lou L (2007) p38 MAPK, but not ERK1/2, is critically involved in the cytotoxicity of the novel vascular disrupting agent combretastatin A4. Int J Cancer 122:1730–1737. doi: 10.1002/ijc.23262 CrossRefGoogle Scholar
  12. 12.
    Fan M, Du L, Stone A et al (2000) Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M. Cancer Res 60:6403–6407PubMedGoogle Scholar
  13. 13.
    Lunt JS, Akerman S, Hill SA et al (2011) Vascular effects dominate solid tumor response to treatment with combretastatin A-4-phosphate. Int J Cancer 129:1979–1989. doi: 10.1002/ijc.25848 CrossRefPubMedGoogle Scholar
  14. 14.
    Delmonte A, Sessa C (2009) AVE8062: a new combretastatin derivative vascular disrupting agent. Expert Opin Investig Drugs 18:1541–1548. doi: 10.1517/13543780903213697 CrossRefPubMedGoogle Scholar
  15. 15.
    Del Conte G, Bahleda R, Morena V et al (2012) A phase I study of ombrabulin (O) combined with bevacizumab (B) in patients with advanced solid tumors. J Clin Oncol 30:(suppl); abstr 3080Google Scholar
  16. 16.
    Salmon HW, Siemann DW (2006) Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin Cancer Res Off J Am Assoc Cancer Res 12:4090–4094. doi: 10.1158/1078-0432.CCR-06-0163 CrossRefGoogle Scholar
  17. 17.
    Wang L, Woods KW, Li Q et al (2002) Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J Med Chem 45:1697–1711. doi: 10.1021/jm010523x CrossRefPubMedGoogle Scholar
  18. 18.
    Schobert R, Biersack B, Dietrich A et al (2010) 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J Med Chem 53:6595–6602. doi: 10.1021/jm100345r CrossRefPubMedGoogle Scholar
  19. 19.
    Biersack B, Muthukumar Y, Schobert R, Sasse F (2011) Cytotoxic and antivascular 1-methyl-4-(3-fluoro-4-methoxyphenyl)-5-(halophenyl)-imidazoles. Bioorg Med Chem Lett 21:6270–6273. doi: 10.1016/j.bmcl.2011.09.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Bonezzi K, Taraboletti G, Borsotti P et al (2009) Vascular disrupting activity of tubulin-binding 1,5-diaryl-1H-imidazoles. J Med Chem 52:7906–7910. doi: 10.1021/jm900968s CrossRefPubMedGoogle Scholar
  21. 21.
    Schobert R, Effenberger-Neidnicht K, Biersack B (2011) Stable combretastatin A-4 analogues with sub-nanomolar efficacy against chemoresistant HT-29 cells. Int J Clin Pharmacol Ther 49:71–72PubMedGoogle Scholar
  22. 22.
    Biersack B, Effenberger K, Schobert R, Ocker M (2010) Oxazole-bridged combretastatin A4 analogues with improved anticancer properties. ChemMedChem 5:420–427. doi: 10.1002/cmdc.200900477 CrossRefPubMedGoogle Scholar
  23. 23.
    Chang C-H, Yu F-Y, Wu T-S et al (2011) Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicol Sci 119:84–92. doi: 10.1093/toxsci/kfq309 CrossRefPubMedGoogle Scholar
  24. 24.
    Lieuvin A, Labbé J-C, Dorée M, Job D (1994) Intrinsic microtubule stability in interphase cells. J Cell Biol 124:985–996CrossRefPubMedGoogle Scholar
  25. 25.
    Aranda E, Owen GI (2009) A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA. hy926 endothelial cell line. Biol Res 42:377–389CrossRefPubMedGoogle Scholar
  26. 26.
    Bauer J, Margolis M, Schreiner C et al (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449CrossRefPubMedGoogle Scholar
  27. 27.
    Nitzsche B, Gloesenkamp C, Schrader M et al (2010) Novel compounds with antiangiogenic and antiproliferative potency for growth control of testicular germ cell tumours. Br J Cancer 103:18–28. doi: 10.1038/sj.bjc.6605725 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374. doi: 10.1038/nrc1075 CrossRefPubMedGoogle Scholar
  29. 29.
    Entschladen F, Drell TL, Lang K et al (2005) Analysis methods of human cell migration. Exp Cell Res 307:418–426. doi: 10.1016/j.yexcr.2005.03.029 CrossRefPubMedGoogle Scholar
  30. 30.
    Albini A, Iwamoto Y, Kleinman HK et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245PubMedGoogle Scholar
  31. 31.
    Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta Rev Cancer 1796:293–308. doi: 10.1016/j.bbcan.2009.07.006 CrossRefGoogle Scholar
  32. 32.
    Li YH, Zhu C (1999) A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastasis 17:423–429CrossRefPubMedGoogle Scholar
  33. 33.
    Okada T, Okuno H, Mitsui Y (1994) A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and alpha 3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis 12:305–314CrossRefPubMedGoogle Scholar
  34. 34.
    Laferriere J (2001) Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem 276:33762–33772. doi: 10.1074/jbc.M008564200 CrossRefPubMedGoogle Scholar
  35. 35.
    Orth JD, Loewer A, Lahav G, Mitchison TJ (2012) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23:567–576CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415CrossRefPubMedGoogle Scholar
  37. 37.
    Schwartz EL (2009) Antivascular actions of microtubule-binding drugs. Clin Cancer Res 15:2594–2601. doi: 10.1158/1078-0432.CCR-08-2710 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936. doi: 10.1038/nature04478 CrossRefPubMedGoogle Scholar
  39. 39.
    Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. doi: 10.1161/01.RES.0000259593.07661.1e CrossRefPubMedGoogle Scholar
  40. 40.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Kuriyama S, Yamazaki M, Mitoro A et al (1998) Analysis of intrahepatic invasion of hepatocellular carcinoma using fluorescent dye-labeled cells in mice. Anticancer Res 18:4181–4188PubMedGoogle Scholar
  42. 42.
    Horan PK, Melnicoff MJ, Jensen BD, Slezak SE (1990) Chapter 42 Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol. Elsevier, 469–490Google Scholar
  43. 43.
    Hofmann UB, Houben R, Bröcker E-B, Becker JC (2005) Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 87:307–314. doi: 10.1016/j.biochi.2005.01.013 CrossRefPubMedGoogle Scholar
  44. 44.
    Orgaz JL, Sanz-Moreno V (2013) Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 26:39–57. doi: 10.1111/pcmr.12041 CrossRefPubMedGoogle Scholar
  45. 45.
    Mikaelian I, Buness A, de Vera-Mudry M-C et al (2010) Primary endothelial damage is the mechanism of cardiotoxicity of tubulin-binding drugs. Toxicol Sci 117:144–151. doi: 10.1093/toxsci/kfq189 CrossRefPubMedGoogle Scholar
  46. 46.
    Lin H-L, Chiou S-H, Wu C-W et al (2007) Combretastatin A4-induced differential cytotoxicity and reduced metastatic ability by inhibition of AKT function in human gastric cancer cells. J Pharmacol Exp Ther 323:365–373. doi: 10.1124/jpet.107.124966 CrossRefPubMedGoogle Scholar
  47. 47.
    Werr J, Xie X, I-Iedqvist P et al (1998) B-integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J Exp Med 18712091–2096Google Scholar
  48. 48.
    Huttenlocher A, Horwitz AR (2011) Integrins in cell migration. Cold Spring Harb Perspect Biol 3:a005074–a005074. doi: 10.1101/cshperspect.a005074 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590PubMedGoogle Scholar
  50. 50.
    Van Nieuw Amerongen GP, van Hinsbergh VWM (2001) Cytoskeletal effects of Rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler Thromb Vasc Biol 21:300–311. doi: 10.1161/01.ATV.21.3.300 CrossRefPubMedGoogle Scholar
  51. 51.
    Haston WS, Shields JM, Wilkinson PC (1982) Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol 92:747–752CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370. doi: 10.1038/nm.2537 CrossRefPubMedGoogle Scholar
  53. 53.
    Pàez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231. doi: 10.1016/j.ccr.2009.01.027 CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Ebos JML, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239. doi: 10.1016/j.ccr.2009.01.021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Katharina Mahal
    • 1
  • Bernhard Biersack
    • 1
  • Henrike Caysa
    • 2
  • Rainer Schobert
    • 1
  • Thomas Mueller
    • 2
  1. 1.Organic Chemistry LaboratoryUniversity BayreuthBayreuthGermany
  2. 2.Department of Internal Medicine IV, Oncology/HematologyMartin-Luther-University Halle-WittenbergHalle-SaaleGermany

Personalised recommendations