Investigational New Drugs

, Volume 33, Issue 1, pp 75–85 | Cite as

Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent

  • Farid Ouchani
  • Albin Jeanne
  • Jessica Thevenard
  • Jean-Jacques Helesbeux
  • Amandine Wahart
  • Isabelle Letinois
  • Olivier Duval
  • Laurent Martiny
  • Emmanuelle Charpentier
  • Jérôme Devy


Angiogenesis plays a pivotal role in tumorigenesis and also contributes to the pathogenesis of hematologic malignancies. A number of plant compounds have shown efficacy in preclinical and clinical studies and some of them possess an anti-angiogenic activity. Our present findings report anti-angiogenic activities of ethoxyfagaronine (etxfag), a synthetic derivative of fagaronine. Once determined the non-cytotoxic concentration of etxfag, we showed that the drug inhibits VEGF-induced angiogenesis in a Matrigel™ plug assay and suppresses ex vivo sprouting from VEGF-treated aortic rings. Each feature leading to neovascularization was then investigated and results demonstrate that etxfag prevents VEGF-induced migration and tube formation in human umbilical vein endothelial cells (HUVEC). Moreover, etxfag also suppresses VEGF-induced VEGFR-2 phosphorylation and inhibits FAK phosphorylation at Y-861 as well as focal adhesion complex turnover. Beside these effects, etxfag modifies MT1-MMP localization at the endothelial cell membrane. Finally, immunoprecipitation assay revealed that etxfag decreases VEGF binding to VEGFR-2. As we previously reported that etxfag is able to prevent leukemic cell invasiveness and adhesion to fibronectin, all together our data collectively support the anti-angiogenic activities of etxfag which could represent an additional approach to current anti-cancer therapies.


Ethoxyfagaronine Angiogenesis VEGF receptor FAK MT1-MMP 



Plateforme IBiSA PICT “Imagerie Cellulaire et Tissulaire” This work was supported by grants from CNRS and Ligue Contre le Cancer Grand Est. We would like to thank J.L. Breda for animal care. The authors acknowledge Dr Laetitia Devy Dimanche for editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225–230, discussion 31PubMedCrossRefGoogle Scholar
  2. 2.
    Shibuya M (2014) VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul) 22:1–9CrossRefGoogle Scholar
  3. 3.
    Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494PubMedCrossRefGoogle Scholar
  4. 4.
    Kampen KR, Ter Elst A, de Bont ES (2013) Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci 70:1307–1317PubMedCrossRefGoogle Scholar
  5. 5.
    Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105:1383–1395PubMedCrossRefGoogle Scholar
  6. 6.
    Podar K, Anderson KC (2010) A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 9:1722–1728PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Medinger M, Mross K (2010) Clinical trials with anti-angiogenic agents in hematological malignancies. J Angiogenes Res 2:10PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lucas DM, Still PC, Perez LB, Grever MR, Kinghorn AD (2010) Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 11:812–822PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Basini G, Bussolati S, Santini SE, Grasselli F (2009) Stanniocalcin, a potential ovarian angiogenesis regulator, does not affect endothelial cell apoptosis. Ann N Y Acad Sci 1171:94–99PubMedCrossRefGoogle Scholar
  10. 10.
    Eun JP, Koh GY (2004) Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem Biophys Res Commun 317:618–624PubMedCrossRefGoogle Scholar
  11. 11.
    De Stefano I, Raspaglio G, Zannoni GF, Travaglia D, Prisco MG, Mosca M et al (2009) Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 78:1374–1381PubMedCrossRefGoogle Scholar
  12. 12.
    Messmer WM, Tin-Wa M, Fong HH, Bevelle C, Farnsworth NR, Abraham DJ et al (1972) Fagaronine, a new tumor inhibitor isolated from Fagara zanthoxyloides Lam. (Rutaceae). J Pharm Sci 61:1858–1859PubMedCrossRefGoogle Scholar
  13. 13.
    Comoe L, Jeannesson P, Trentesaux C, Desoize B, Jardillier JC (1987) The antileukemic alkaloid fagaronine and the human K 562 leukemic cells: effects on growth and induction of erythroid differentiation. Leuk Res 11:445–451PubMedCrossRefGoogle Scholar
  14. 14.
    Stermitz FR, Larson KA, Kim DK (1973) Some structural relationships among cytotoxic and antitumor benzophenanthridine alkaloid derivatives. J Med Chem 16:939–940PubMedCrossRefGoogle Scholar
  15. 15.
    Lynch MA, Duval O, Sukhanova A, Devy J, MacKay SP, Waigh RD et al (2001) Synthesis, biological activity and comparative analysis of DNA binding affinities and human DNA topoisomerase I inhibitory activities of novel 12-alkoxy-benzo[c]phenanthridinium salts. Bioorg Med Chem Lett 11:2643–2646PubMedCrossRefGoogle Scholar
  16. 16.
    Deroussent A, Re M, Hoellinger H, Vanquelef E, Duval O, Sonnier M et al (2004) In vitro metabolism of ethoxidine by human CYP1A1 and rat microsomes: identification of metabolites by high-performance liquid chromatography combined with electrospray tandem mass spectrometry and accurate mass measurements by time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:474–482PubMedCrossRefGoogle Scholar
  17. 17.
    Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ouchani F, Devy J, Rusciani A, Helesbeux JJ, Salesse S, Letinois I et al (2012) Targeting focal adhesion assembly by ethoxyfagaronine prevents lymphoblastic cell adhesion to fibronectin. Anal Cell Pathol 35:267–284CrossRefGoogle Scholar
  19. 19.
    Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 360:255–264PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG (2001) Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem 276:37491–37500PubMedCrossRefGoogle Scholar
  21. 21.
    Medinger M, Fischer N, Tzankov A (2010) Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol 2010:729725PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sallam TH, El Telbany MA, Mahmoud HM, Iskander MA (2013) Significance of neuropilin-1 expression in acute myeloid leukemia. Turk J Haematol 30:300–306PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ma J, Waxman DJ (2008) Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7:3670–3684PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Thevenard J, Ramont L, Devy J, Brassart B, Dupont-Deshorgue A, Floquet N et al (2010) The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer J Int Du Cancer 126:1055–1066Google Scholar
  25. 25.
    Genis L, Galvez BG, Gonzalo P, Arroyo AG (2006) MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 25:77–86PubMedCrossRefGoogle Scholar
  26. 26.
    Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369PubMedCrossRefGoogle Scholar
  27. 27.
    Parat MO, Anand-Apte B, Fox PL (2003) Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 14:3156–3168PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Tahir SA, Park S, Thompson TC (2009) Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 8:2286–2296PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22PubMedGoogle Scholar
  30. 30.
    Devy J, Ouchani F, Oudot C, Helesbeux JJ, Vanquelef E, Salesse S, et al (2010). The anti-invasive activity of synthetic alkaloid ethoxyfagaronine on L1210 leukemia cells is mediated by down-regulation of plasminogen activators and MT1-MMP expression and activity. Invest New DrugsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Farid Ouchani
    • 1
  • Albin Jeanne
    • 1
  • Jessica Thevenard
    • 1
  • Jean-Jacques Helesbeux
    • 2
  • Amandine Wahart
    • 1
  • Isabelle Letinois
    • 1
  • Olivier Duval
    • 2
  • Laurent Martiny
    • 1
  • Emmanuelle Charpentier
    • 1
  • Jérôme Devy
    • 1
  1. 1.CNRS UMR7369 MEDyC, Laboratoire SiRMa, SFR CAP-SantéUniversité de Reims Champagne-ArdenneReims cedex 2France
  2. 2.SONAS, UFR Sciences Pharmaceutiques et Ingénierie de la SantéUniversité d’AngersAngersFrance

Personalised recommendations