Skip to main content

Advertisement

Log in

Improved replication efficiency of echovirus 5 after transfection of colon cancer cells using an authentic 5’ RNA genome end methodology

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Oncolytic virotherapy is a promising novel form of cancer treatment, but the therapeutic efficiency needs improvement. A potential strategy to enhance the therapeutic effect of oncolytic viruses is to use infectious nucleic acid as therapeutic agent to initiate an oncolytic infection, without administrating infectious viral particles. Here we demonstrate improved viral replication activation efficiency when transfecting cells with 5’ end authentic in vitro transcribed enterovirus RNA as compared to genomic RNA with additional non-genomic 5’ nucleotides generated by conventional cloning methods. We used echovirus 5 (E5) as an oncolytoc model virus due to its ability to replicate in and completely destroy five out of six colon cancer cell lines and kill artificial colon cancer tumors (HT29 spheroids), as shown here. An E5 infectious cDNA clone including a hammerhead ribozyme sequence was used to generate in vitro transcripts with native 5’ genome ends. In HT29 cells, activation of virus replication is approximately 20-fold more efficient for virus genome transcripts with native 5’ genome ends compared to E5 transcripts generated from a standard cDNA clone. This replication advantage remains when viral progeny release starts by cellular lysis 22 h post transfection. Hence, a native 5’ genomic end improves infection activation efficacy of infectious nucleic acid, potentially enhancing its therapeutic effect when used for cancer treatment. The clone design with a hammerhead ribozyme is likely to be applicable to a variety of oncolytic positive sense RNA viruses for the purpose of improving the efficacy of oncolytic virotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Bourke MG, Salwa S, Harrington KJ, Kucharczyk MJ, Forde PF, de Kruijf M, Soden D, Tangney M, Collins JK, O’Sullivan GC (2011) The emerging role of viruses in the treatment of solid tumours. Cancer Treat Rev 37:618–632. doi:10.1016/j.ctrv.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Liu TC, Galanis E, Kirn D (2007) Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 4:101–117. doi:10.1038/ncponc0736

    Article  CAS  PubMed  Google Scholar 

  4. Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30:658–670. doi:10.1038/nbt.2287

    Article  CAS  PubMed  Google Scholar 

  5. Ochiai H, Campbell SA, Archer GE, Chewning TA, Dragunsky E, Ivanov A, Gromeier M, Sampson JH (2006) Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 12:1349–1354. doi:10.1158/1078-0432.CCR-05-1595

    Article  CAS  PubMed  Google Scholar 

  6. Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007) Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 99:1623–1633

    Article  CAS  PubMed  Google Scholar 

  7. Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res 17:888–895. doi:10.1158/1078-0432.CCR-10-1706

    Article  CAS  PubMed  Google Scholar 

  8. Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10:53–60

    Article  CAS  PubMed  Google Scholar 

  9. ClinicalTrials.gov. References within. https://clinicaltrials.gov/ct2/home. Accessed 23 May 2014

  10. Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32

    CAS  PubMed  Google Scholar 

  11. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e1001005. doi:10.1371/journal.ppat.1001005

    Article  PubMed Central  PubMed  Google Scholar 

  12. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  CAS  PubMed  Google Scholar 

  13. Working PK, Lin A, Borellini F (2005) Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene 24:7792–7801. doi:10.1038/sj.onc.1209045

    Article  CAS  PubMed  Google Scholar 

  14. Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919

    Article  CAS  PubMed  Google Scholar 

  15. van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 83:2330–2334

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hadac EM, Kelly EJ, Russell SJ (2011) Myeloma xenograft destruction by a nonviral vector delivering oncolytic infectious nucleic acid. Mol Ther 19:1041–1047. doi:10.1038/mt.2011.68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Duke GM, Palmenberg AC (1989) Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol 63:1822–1826

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5’ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Herold J, Andino R (2000) Poliovirus requires a precise 5’ end for efficient positive-strand RNA synthesis. J Virol 74:6394–6400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB (2006) Relationship between poliovirus negative-strand RNA synthesis and the length of the 3’ poly(A) tail. Virology 345:509–519. doi:10.1016/j.virol.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  21. Lazouskaya NV, Palombo EA, Poh CL, Barton PA (2014) Construction of an infectious cDNA clone of Enterovirus 71: insights into the factors ensuring experimental success. J Virol Methods 197:67–76. doi:10.1016/j.jviromet.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  22. Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids-old hat or new challenge? Int J Radiat Biol 83:849–871. doi:10.1080/09553000701727531

    Article  CAS  PubMed  Google Scholar 

  23. Israelsson S, Jonsson N, Gullberg M, Lindberg AM (2011) Cytolytic replication of echoviruses in colon cancer cell lines. Virol J 8:473. doi:10.1186/1743-422X-8-473

    Article  PubMed Central  PubMed  Google Scholar 

  24. Israelsson S, Gullberg M, Jonsson N, Roivainen M, Edman K, Lindberg AM (2010) Studies of Echovirus 5 interactions with the cell surface: heparan sulfate mediates attachment to the host cell. Virus Res 151:170–176. doi:10.1016/j.virusres.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  25. Lindberg AM, Polacek C, Johansson S (1997) Amplification and cloning of complete enterovirus genomes by long distance PCR. J Virol Methods 65:191–199

    Article  CAS  PubMed  Google Scholar 

  26. Lindberg AM, Johansson S, Andersson A (1999) Echovirus 5: infectious transcripts and complete nucleotide sequence from uncloned cDNA. Virus Res 59:75–87

    Article  CAS  PubMed  Google Scholar 

  27. Lindberg AM, Andersson A (1999) Purification of full-length enterovirus cDNA by solid phase hybridization capture facilitates amplification of complete genomes. J Virol Methods 77:131–137

    Article  CAS  PubMed  Google Scholar 

  28. Hierholzer JC, Killington RA (1996) Virus isolation and quantitation. In: Mahy BWJ, Kangro HO (eds) Virology methods manual. Academic Pres Limited, Glasgow, pp 25–46

    Chapter  Google Scholar 

  29. Jonsson N, Gullberg M, Lindberg AM (2009) Real-time polymerase chain reaction as a rapid and efficient alternative to estimation of picornavirus titers by tissue culture infectious dose 50 % or plaque forming units. Microbiol Immunol 53:149–154. doi:10.1111/j.1348-0421.2009.00107.x

    Article  CAS  PubMed  Google Scholar 

  30. Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129. doi:10.1016/j.ab.2008.04.036

    Article  CAS  PubMed  Google Scholar 

  31. Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA (2006) Enterovirus surveillance-United States, 1970–2005. MMWR Surveill Summ 55:1–20

    PubMed  Google Scholar 

  32. Roos FC, Roberts AM, Hwang II, Moriyama EH, Evans AJ, Sybingco S, Watson IR, Carneiro LA, Gedye C, Girardin SE, Ailles LE, Jewett MA, Milosevic M, Wilson BC, Bell JC, Der SD, Ohh M (2010) Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol Med 2:275–288. doi:10.1002/emmm.201000081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shafren DR, Sylvester D, Johansson ES, Campbell IG, Barry RD (2005) Oncolysis of human ovarian cancers by echovirus type 1. Int J Cancer 115:320–328

    Article  CAS  PubMed  Google Scholar 

  34. Atkins GJ, Smyth JW, Fleeton MN, Galbraith SE, Sheahan BJ (2004) Alphaviruses and their derived vectors as anti-tumor agents. Curr Cancer Drug Targets 4:597–607

    Article  CAS  PubMed  Google Scholar 

  35. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A 100:7289–7294. doi:10.1073/pnas.1232294100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14:154–161. doi:10.1038/nm1726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christina Gustafson-Svärd and Hans-Christoph Selinka for providing cells. This study was supported by grants from the National Graduate School of Pharmaceutical Sciences (FLäK) and the Faculty of Health and Life Science, Linnaeus University.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lindberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israelsson, S., Sävneby, A., Ekström, JO. et al. Improved replication efficiency of echovirus 5 after transfection of colon cancer cells using an authentic 5’ RNA genome end methodology. Invest New Drugs 32, 1063–1070 (2014). https://doi.org/10.1007/s10637-014-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0136-z

Keywords

Navigation