Investigational New Drugs

, Volume 32, Issue 5, pp 871–882 | Cite as

Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models

  • Laura Muñoz-Moreno
  • M. Isabel Arenas
  • M. José Carmena
  • Andrew V. Schally
  • Juan C. PrietoEmail author
  • Ana M. Bajo


Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in a variety of cellular phenotypes related with tumorigenesis process. Human epidermal growth factor receptor family members (HER) such as EGFR and HER2 are involved in mitogenic signaling pathways implicated in the progression of prostate cancer. We analyzed the cross-talk between GHRH and EGF receptors in prostate cancer. The effects of GHRH in HER signaling were evaluated on human androgen-independent PC3 prostate cancer cells in vitro and GHRH antagonist in vitro and in nude mice xenografts of PC3 prostate cancer. Time-course studies indicated that GHRH had a stimulatory activity on both the expression of EGFR and HER2. GHRH analogues, JMR-132 and JV-1–38, endowed with antagonistic activity for GHRH receptors, abrogated the response to GHRH in PC3 cells. GHRH stimulated a rapid ligand-independent activation of EGFR and HER2 involving at least cAMP/PKA and Src family signaling pathways. GHRH also stimulated a slow ligand-dependent activation of EGFR and HER2 involving an extracellular pathway with an important role for ADAM. Preliminary results also revealed an increase of mRNA for GHRH and GHRH receptor induced by EGF. The inhibition of tumor growth, in vivo, was associated with a substantial reduction in the expression of mRNA and protein levels of EGFR and HER2 in the tumors. GHRH antagonist JV-1–38, significantly decreased the phosphorylated Src levels. The cross-talk between HER and GHRH-R may be impeded by combining drugs acting upon GHRH receptors and HER family members in human advanced prostate cancer.


GHRH GHRH antagonists HER Cross-talk Transactivation 



This work was supported by the Junta de Comunidades de Castilla-La Mancha [grant number PII10-0189-3222 to A.M.B.] and by the University of Alcalá [FPU/UAH grant to L.M.M.]. Synthesis of GHRH antagonists in the laboratory of AVS was supported by the Medical Research Service of the Veterans Affairs Department.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30CrossRefPubMedGoogle Scholar
  2. 2.
    Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y et al (2013) ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 27:683–698PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kuzumaki N, Suzuki A, Narita M, Hosoya T, Nagasawa A, Imai S et al (2012) Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PLoS One 7:e44368PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Schally AV, Varga JL, Engel JB (2008) Antagonists of growth-hormone-releasing hormone: an emerging new therapy for cancer. Nat Clin Pract Endocrinol Metab 4:33–43CrossRefPubMedGoogle Scholar
  5. 5.
    Havt A, Schally AV, Halmos G, Varga JL, Toller GL, Horvath JE et al (2005) The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues. Proc Natl Acad Sci U S A 102:17424–17429PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Rick FG, Schally AV, Szalontay L, Block NL, Szepeshazi K, Nadji M et al (2012) Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases. Proc Natl Acad Sci U S A 109:1655–1660PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Stangelberger A, Schally AV, Djavan B (2008) New treatment approaches for prostate cancer based on peptide analogues. Eur Urol 53:890–900CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia-Fernandez MO, Schally AV, Varga JL, Groot K, Busto R (2003) The expression of growth hormone-releasing hormone (GHRH) and its receptor splice variants in human breast cancer lines; the evaluation of signaling mechanisms in the stimulation of cell proliferation. Breast Cancer Res Treat 77:15–26CrossRefPubMedGoogle Scholar
  9. 9.
    Kanashiro CA, Schally AV, Zarandi M, Hammann BD, Varga JL (2004) Suppression of growth of H-69 small cell lung carcinoma by antagonists of growth hormone releasing hormone and bombesin is associated with an inhibition of protein kinase C signaling. Int J Cancer 112:570–576CrossRefPubMedGoogle Scholar
  10. 10.
    Muñoz-Moreno L, Arenas MI, Schally AV, Fernández-Martínez AB, Zarka E, González-Santander M et al (2013) Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer. Int J Cancer 132:755–765CrossRefPubMedGoogle Scholar
  11. 11.
    Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31CrossRefPubMedGoogle Scholar
  12. 12.
    Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A (2006) The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 1766:120–139PubMedGoogle Scholar
  13. 13.
    Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R et al (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444PubMedGoogle Scholar
  14. 14.
    Berger R, Lin DI, Nieto M, Sicinska E, Garraway LA, Adams H et al (2006) Androgen-dependent regulation of Her-2/neu in prostate cancer cells. Cancer Res 66:5723–5728CrossRefPubMedGoogle Scholar
  15. 15.
    Delcourt N, Bockaert J, Marin P (2007) GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol Sci 28:602–607CrossRefPubMedGoogle Scholar
  16. 16.
    Sotomayor S, Carmena MJ, Schally AV, Sánchez-Chapado M, Prieto JC, Bajo AM (2007) Transactivation of HER2 by vasoactive intestinal peptide in experimental prostate cancer: antagonistic action of an analog of growth-hormone-releasing hormone. Int J Oncol 31:1223–1230PubMedGoogle Scholar
  17. 17.
    Sotomayor S, Muñoz-Moreno L, Carmena MJ, Schally AV, Sánchez-Chapado M, Prieto JC et al (2010) Regulation of her expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095). Int J Cancer 127:1813–1822CrossRefPubMedGoogle Scholar
  18. 18.
    Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14:667–678PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Araujo JC, Trudel GC, Paliwal P (2013) Long-term use of dasatinib in patients with metastatic castration-resistant prostate cancer after receiving the combination of dasatinib and docetaxel. Cancer Manag Res 6:25–30PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Asim M, Siddiqui IA, Hafeez BB, Baniahmad A, Mukhtar H (2008) Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene 27:3596–3604CrossRefPubMedGoogle Scholar
  21. 21.
    Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H et al (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896CrossRefPubMedGoogle Scholar
  22. 22.
    Liebmann C (2011) EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol 331:222–231CrossRefPubMedGoogle Scholar
  23. 23.
    Fernández-Martínez AB, Bajo AM, Isabel Arenas M, Sánchez-Chapado M, Prieto JC, Carmena MJ (2010) Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1. Cancer Lett 299:11–21CrossRefPubMedGoogle Scholar
  24. 24.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, New Jersey, pp 365–386Google Scholar
  25. 25.
    Carlsson J, Shen L, Xiang J, Xu J, Wei Q (2013) Tendencies for higher co-expression of EGFR and HER2 and downregulation of HER3 in prostate cancer lymph node metastases compared with corresponding primary tumors. Oncol Lett 5:208–214PubMedCentralPubMedGoogle Scholar
  26. 26.
    Rezaiemanesh A, Majidi J, Baradaran B, Movasaghpour A, Nakhlband A, Barar J et al (2010) Impacts of anti-EGFR monoclonal antibody in prostate cancer PC3 cells. Hum Antibodies 19:63–70PubMedGoogle Scholar
  27. 27.
    Bartlett JM, Brawley D, Grigor K, Munro AF, Dunne B, Edwards J (2005) Type I receptor tyrosine kinases are associated with hormone escape in prostate cancer. J Pathol 205:522–529CrossRefPubMedGoogle Scholar
  28. 28.
    Valdehita A, Bajo AM, Schally AV, Varga JL, Carmena MJ, Prieto JC (2009) Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Mol Cell Endocrinol 302:41–48CrossRefPubMedGoogle Scholar
  29. 29.
    De Heuvel E, Wallace L, Sharkey KA, Sigalet DL (2012) Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phosphatidylinositol 3-kinase-γ signaling. Am J Physiol Endocrinol Metab 303:E994–E1005PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Bertelsen LS, Barrett KE, Keely SJ (2004) Gs protein-coupled receptor agonists induce transactivation of the epidermal growth factor receptor in T84 cells: implications for epithelial secretory responses. J Biol Chem 279:6271–6279CrossRefPubMedGoogle Scholar
  31. 31.
    Majeed N, Blouin MJ, Kaplan-Lefko PJ, Barry-Shaw J, Greenberg NM, Gaudreau P et al (2005) A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 24:4736–4740CrossRefPubMedGoogle Scholar
  32. 32.
    Barabutis N, Schally AV (2008) Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines. Br J Cancer 98:1790–1796PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Rekasi Z, Czompoly T, Schally AV, Boldizsar F, Varga JL, Zarandi M et al (2005) Antagonist of growth hormone-releasing hormone induces apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway. Proc Natl Acad Sci U S A 102:3435–3440PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Halmos G, Schally AV, Czompoly T, Krupa M, Varga JL, Rekasi Z (2002) Expression of growth hormone-releasing hormone and its receptor splice variants in human prostate cancer. J Clin Endocrinol Metab 87:707–4714CrossRefGoogle Scholar
  35. 35.
    Csernus V, Schally AV, Groot K (1999) Antagonistic analogs of growth hormone releasing hormone (GHRH) inhibit cyclic AMP production of human cancer cell lines in vitro. Peptides 20:843–850CrossRefPubMedGoogle Scholar
  36. 36.
    Delcourt N, Thouvenot E, Chanrion B, Galéotti N, Jouin P, Bockaert J, Marin P (2007) PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J 26:1542–1551PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Fizazi K (2007) The role of Src in prostate cancer. Ann Oncol 18:1765–1773CrossRefPubMedGoogle Scholar
  38. 38.
    Rozengurt E (2007) Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213:589–602CrossRefPubMedGoogle Scholar
  39. 39.
    El Zein N, D’Hondt S, Sariban E (2010) Crosstalks between the receptors tyrosine kinase EGFR and TrkA and the GPCR, FPR, in human monocytes are essential for receptors-mediated cell activation. Cell Signal 22:1437–1447CrossRefPubMedGoogle Scholar
  40. 40.
    Higashiyama S, Nanba D, Nakayama H, Inoue H, Fukuda S (2011) Ectodomain shedding and remnant peptide signalling of EGFRs and their ligands. J Biochem 150:15–22CrossRefPubMedGoogle Scholar
  41. 41.
    Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF et al (2012) ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol 40:1714–1724PubMedGoogle Scholar
  42. 42.
    Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888PubMedGoogle Scholar
  43. 43.
    Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation in cancer cells. Biochem Soc Trans 31:1203–1208CrossRefPubMedGoogle Scholar
  44. 44.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289CrossRefPubMedGoogle Scholar
  45. 45.
    Maretzky T, Zhou W, Huang XY, Blobel CP (2011) A transforming Src mutant increases the bioavailability of EGFR ligands via stimulation of the cell-surface metalloproteinase ADAM17. Oncogene 30:611–618PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Yen L, Benlimame N, Nie ZR, Xiao D, Wang T, Al Moustafa AE et al (2002) Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Mol Biol Cell 13:4029–4044PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH et al (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60:6841–6845PubMedGoogle Scholar
  48. 48.
    Mira E, Lacalle RA, González MA, Gómez-Moutón C, Abad JL, Bernad A et al (2001) A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2:151–156PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Buchholz S, Schally AV, Engel JB, Hohla F, Heinrich E, Koester F et al (2007) Potentiation of mammary cancer inhibition by combination of antagonists of growth hormone-releasing hormone with docetaxel. Proc Natl Acad Sci U S A 104:1943–1946PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A 99:12847–12852PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 278:23343–23351CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura Muñoz-Moreno
    • 1
  • M. Isabel Arenas
    • 2
  • M. José Carmena
    • 1
  • Andrew V. Schally
    • 3
  • Juan C. Prieto
    • 4
    Email author
  • Ana M. Bajo
    • 1
  1. 1.Department of Systems Biology, Unit of Biochemistry and Molecular BiologyUniversity of AlcaláAlcalá de HenaresSpain
  2. 2.Department of Biomedicine and Biotechnology, Unit of Cell BiologyUniversity of AlcaláAlcalá de HenaresSpain
  3. 3.Veterans Administration Medical Center and Departments of Pathology and Medicine, Division of Oncology and HematologyUniversity of Miami Miller School of Medicine and South Florida Veterans Affairs Foundation for Research and EducationMiamiUSA
  4. 4.Department of Systems Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine and Health SciencesUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations