Investigational New Drugs

, Volume 32, Issue 5, pp 985–994 | Cite as

Pharmacokinetic/Pharmacodynamic modeling of abexinostat-induced thrombocytopenia across different patient populations: application for the determination of the maximum tolerated doses in both lymphoma and solid tumour patients

  • Quentin Chalret du Rieu
  • Sylvain Fouliard
  • Mélanie White-Koning
  • Ioana Kloos
  • Etienne ChatelutEmail author
  • Marylore Chenel


Background In the clinical development of oncology drugs, the recommended dose is usually determined using a 3 + 3 dose-escalation study design. However, this phase I design does not always adequately describe dose-toxicity relationships. Methods 125 patients, with either solid tumours or lymphoma, were included in the study and 1217 platelet counts were available over three treatment cycles. The data was used to build a population pharmacokinetic/pharmacodynamic (PKPD) model using a sequential modeling approach. Model-derived Recommended Doses (MDRD) of abexinostat (a Histone Deacetylase Inhibitor) were determined from simulations of different administration schedules, and the higher bound for the probability of reaching these MDRD with a 3 + 3 design were obtained. Results The PKPD model developed adequately described platelet kinetics in both patient populations with the inclusion of two platelet baseline counts and a disease progression component for patients with lymphoma. Simulation results demonstrated that abexinostat administration during the first 4 days of each week in a 3-week cycle led to a higher MDRD compared to the other administration schedules tested, with a maximum probability of 40 % of reaching these MDRDs using a 3 + 3 design. Conclusions The PKPD model was able to predict thrombocytopenia following abexinostat administration in both patient populations. A model-based approach to determine the recommended dose in phase I trials is preferable due to the imprecision of the 3 + 3 design.


Abexinostat Thrombocytopenia PKPD model Recommended Dose Simulation Disease progression 


Acknowledgments and disclosures

Authors would like to thank Pharmacyclics for providing data from the PCYC-402 and the PCYC-403 clinical studies.

Author’s disclosures of potential conflicts of interest: Quentin Chalret du Rieu, Sylvain Fouliard, Ioana Kloos and Marylore Chenel are employed by Institut de Recherches Internationales Servier. The other author (s) indicated no potential conflicts of interest.

This work was integrated in a Ph. D. project (Quentin Chalret du Rieu), granted by Institut de Recherches Internationales Servier.

We thank Ms Katie Owens for her editorial assistance.


  1. 1.
    Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684–692PubMedGoogle Scholar
  2. 2.
    Le Tourneau C, Faivre S, Raymond E, Dieras V (2007) Phase I cancer trials methodology. Bull Cancer 94:943–951PubMedGoogle Scholar
  3. 3.
    Ratain MJ, Mick R, Schilsky RL, Siegler M (1993) Statistical and ethical issues in the design and conduct of phase I and II clinical trials of new anticancer agents. J Natl Cancer Inst 85:1637–1643CrossRefPubMedGoogle Scholar
  4. 4.
    Cannistra SA (2008) Challenges and pitfalls of combining targeted agents in phase I studies. J Clin Oncol 26:3665–3667CrossRefPubMedGoogle Scholar
  5. 5.
    Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101:708–720PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J, Christian MC (1997) Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst 89:1138–1147CrossRefPubMedGoogle Scholar
  7. 7.
    Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937CrossRefPubMedGoogle Scholar
  8. 8.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  9. 9.
    Storer BE (2001) An evaluation of phase I clinical trial designs in the continuous dose–response setting. Stat Med 20:2399–2408CrossRefPubMedGoogle Scholar
  10. 10.
    Von Hoff DD, Turner J (1991) Response rates, duration of response, and dose response effects in phase I studies of antineoplastics. Invest New Drugs 9:115–122CrossRefGoogle Scholar
  11. 11.
    Bhatia M, Davenport V, Cairo MS (2007) The role of interleukin-11 to prevent chemotherapy-induced thrombocytopenia in patients with solid tumors, lymphoma, acute myeloid leukemia and bone marrow failure syndromes. Leuk Lymphoma 48:9–15CrossRefPubMedGoogle Scholar
  12. 12.
    Elting LS, Rubenstein EB, Martin CG, Kurtin D, Rodriguez S, Laiho E, Kanesan K, Cantor SB, Benjamin RS (2001) Incidence, cost, and outcomes of bleeding and chemotherapy dose modification among solid tumor patients with chemotherapy-induced thrombocytopenia. J Clin Oncol 19:1137–1146PubMedGoogle Scholar
  13. 13.
    Elting LS, Martin CG, Kurtin DJ, Cantor SB, Rubenstein EB, Rodriguez S, Kanesan K, Vadhan-Raj S, Benjamin RS (2002) The bleeding risk index: a clinical prediction rule to guide the prophylactic use of platelet transfusions in patients with lymphoma or solid tumors. Cancer 94:3252–3262CrossRefPubMedGoogle Scholar
  14. 14.
    Belt RJ, Leite C, Haas CD, Stephens RL (1978) Incidence of hemorrhagic complications in patients with cancer. JAMA 239:2571–2574CrossRefPubMedGoogle Scholar
  15. 15.
    Dutcher JP, Schiffer CA, Aisner J, O’Connell BA, Levy C, Kendall JA, Wiernik PH (1984) Incidence of thrombocytopenia and serious hemorrhage among patients with solid tumors. Cancer 53:557–562CrossRefPubMedGoogle Scholar
  16. 16.
    Gaydos, L. A., Freireich, E. J., Mantel, N. (3-5-1962) The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. N Engl J Med 266:905–909Google Scholar
  17. 17.
    Bishton MJ, Harrison SJ, Martin BP, McLaughlin N, James C, Josefsson EC, Henley KJ, Kile BT, Prince HM, Johnstone RW (2011) Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood 117:3658–3668CrossRefPubMedGoogle Scholar
  18. 18.
    Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Matsuoka H, Unami A, Fujimura T, Noto T, Takata Y, Yoshizawa K, Mori H, Aramori I, Mutoh S (2007) Mechanisms of HDAC inhibitor-induced thrombocytopenia. Eur J Pharmacol 571:88–96CrossRefPubMedGoogle Scholar
  20. 20.
    Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969CrossRefPubMedGoogle Scholar
  21. 21.
    Ali A, Bluteau O, Messaoudi K, Palazzo A, Boukour S, Lordier L, Lecluse Y, Rameau P, Kraus-Berthier L, Jacquet-Bescond A, Lelievre H, Depil S, Dessen P, Solary E, Raslova H, Vainchenker W, Plo I, Debili N (2013) Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis 4:e738PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Chalret du Rieu Q, Fouliard S, Jacquet-Bescond A, Robert R, Kloos I, Depil S, Chatelut E, Chenel M (2013) Application of hematological toxicity modeling in clinical development of abexinostat (S-78454, PCI-24781). a new histone deacetylase inhibitor. Pharm Res 30:2640–2653CrossRefPubMedGoogle Scholar
  23. 23.
    Faries D (1994) Practical modifications of the continual reassessment method for phase I cancer clinical trials. J Biopharm Stat 4:147–164CrossRefPubMedGoogle Scholar
  24. 24.
    He W, Liu J, Binkowitz B, Quan H (2006) A model-based approach in the estimation of the maximum tolerated dose in phase I cancer clinical trials. Stat Med 25:2027–2042CrossRefPubMedGoogle Scholar
  25. 25.
    Smith TL, Lee JJ, Kantarjian HM, Legha SS, Raber MN (1996) Design and results of phase I cancer clinical trials: three year experience at M.D. anderson cancer center. J Clin Oncol 14:287–295PubMedGoogle Scholar
  26. 26.
    Fouliard S, Robert R, Jacquet-Bescond A, du Rieu QC, Balasubramanian S, Loury D, Loriot Y, Hollebecque A, Kloos I, Soria JC, Chenel M, Depil S (2013) Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I. Eur J Cancer 49:2791–2797CrossRefPubMedGoogle Scholar
  27. 27.
    Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. michaelis-menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang L, Beal SL, Sheiner LB (2003) Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn 30:387–404CrossRefPubMedGoogle Scholar
  29. 29.
    Quartino AL, Friberg LE, Karlsson MO (2012) A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs 30:833–845CrossRefPubMedGoogle Scholar
  30. 30.
    Van Kesteren C, Zandvliet AS, Karlsson MO, Mathot RA, Punt CJ, Armand JP, Raymond E, Huitema AD, Dittrich C, Dumez H, Roche HH, Droz JP, Ravic M, Yule SM, Wanders J, Beijnen JH, Fumoleau P, Schellens JH (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 23:225–234CrossRefPubMedGoogle Scholar
  31. 31.
    Brendel K, Comets E, Laffont C, Laveille C, Mentre F (2006) Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res 23:2036–2049PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Brendel K, Comets E, Laffont C, Mentre F (2010) Evaluation of different tests based on observations for external model evaluation of population analyses. J Pharmacokinet Pharmacodyn 37:49–65PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lavielle M, Bleakley K (2011) Automatic data binning for improved visual diagnosis of pharmacometric models. J Pharmacokinet Pharmacodyn 38:861–871CrossRefPubMedGoogle Scholar
  34. 34.
    Post TM, Freijer JI, Ploeger BA, Danhof M (2008) Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn 35:185–202PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Hitchcock, I. S., Kaushansky, K. (2014) Thrombopoietin from beginning to end. Br J Haematol.Google Scholar
  36. 36.
    Kaushansky K (2003) Thrombopoietin: a tool for understanding thrombopoiesis. J Thromb Haemost 1:1587–1592CrossRefPubMedGoogle Scholar
  37. 37.
    Comets E, Brendel K, Mentre F (2008) Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed 90:154–166CrossRefPubMedGoogle Scholar
  38. 38.
    Ji Y, Li Y, Nebiyou BB (2007) Dose-finding in phase I clinical trials based on toxicity probability intervals. Clin Trials 4:235–244CrossRefPubMedGoogle Scholar
  39. 39.
    Ji Y, Wang SJ (2013) Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials. J Clin Oncol 31:1785–1791PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Quentin Chalret du Rieu
    • 1
    • 2
  • Sylvain Fouliard
    • 1
  • Mélanie White-Koning
    • 2
  • Ioana Kloos
    • 3
  • Etienne Chatelut
    • 2
    • 4
    Email author
  • Marylore Chenel
    • 1
  1. 1.Clinical Pharmacokinetics DepartmentInstitut de Recherches Internationales ServierSuresnesFrance
  2. 2.EA4553Université Paul Sabatier and Institut Universitaire du Cancer Toulouse - OncopoleToulouseFrance
  3. 3.Oncology Business UnitInstitut de Recherches Internationales ServierSuresnesFrance
  4. 4.Institut Universitaire du Cancer Toulouse - OncopoleToulouse Cedex 9France

Personalised recommendations