Advertisement

Investigational New Drugs

, Volume 32, Issue 5, pp 955–968 | Cite as

Preclinical analyses and phase I evaluation of LY2603618 administered in combination with Pemetrexed and cisplatin in patients with advanced cancer

  • Emiliano CalvoEmail author
  • Victor J. Chen
  • Mark Marshall
  • Ute Ohnmacht
  • Scott M. Hynes
  • Elizabeth Kumm
  • H. Bruce Diaz
  • Darlene Barnard
  • Farhana F. Merzoug
  • Lysiane Huber
  • Lisa Kays
  • Philip Iversen
  • Antonio Calles
  • Beatrice Voss
  • Aimee Bence Lin
  • Nicolas Dickgreber
  • Thomas Wehler
  • Martin Sebastian
PHASE I STUDIES

Summary

LY2603618 is an inhibitor of checkpoint kinase 1 (CHK1), an important regulator of the DNA damage checkpoints. Preclinical experiments analyzed NCI-H2122 and NCI-H441 NSCLC cell lines and in vitro/in vivo models treated with pemetrexed and LY2603618 to provide rationale for evaluating this combination in a clinical setting. Combination treatment of LY2603618 with pemetrexed arrested DNA synthesis following initiation of S-phase in cells. Experiments with tumor-bearing mice administered the combination of LY2603618 and pemetrexed demonstrated a significant increase of growth inhibition of NCI-H2122 (H2122) and NCI-H441 (H441) xenograft tumors. These data informed the clinical assessment of LY2603618 in a seamless phase I/II study, which administered pemetrexed (500 mg/m2) and cisplatin (75 mg/m2) and escalating doses of LY2603618: 130–275 mg. Patients were assessed for safety, toxicity, and pharmacokinetics. In phase I, 14 patients were enrolled, and the most frequently reported adverse events included fatigue, nausea, pyrexia, neutropenia, and vomiting. No DLTs were reported at the tested doses. The systemic exposure of LY2603618 increased in a dose-dependent manner. Pharmacokinetic parameters that correlate with the maximal pharmacodynamic effect in nonclinical xenograft models were achieved at doses ≥240 mg. The pharmacokinetics of LY2603618, pemetrexed, and cisplatin were not altered when used in combination. Two patients achieved a confirmed partial response (both non-small cell lung cancer), and 8 patients had stable disease. LY2603618 administered in combination with pemetrexed and cisplatin demonstrated an acceptable safety profile. The recommended phase II dose of LY2603618 was 275 mg.

Keywords

CHK1 Cancer LY2603618 Cell cycle Lung cancer Pharmacokinetics 

Notes

Acknowledgments

The authors acknowledge Justin Meyer, Rita Bowers and Lisa Green at Covance Laboratory for their help with the flow cytometry, Ignacio Garcias-Ribas and Eric Westin for their contributions to the CHK1 clinical program, and Suzanne R.L. Young of Eli Lilly and Company for writing assistance.

Conflict of interest

M.S. reports the following: Advisory Board: Lilly, Boehringer Ingelheim, Pfizer, TEVA Lectures: Novartis, Roche, Pfizer, Abbott, Amgen, Lilly, Boehringer Ingelheim. E.K. is an employee of inVentiv HealthClinical.

M.M., V.C., U.O., S.M.H., H.B.D., D.B., F.F.M., L.H., L.K., P.I., and A.B.L. are all employees and shareholders of Eli Lilly and Company.

This study was conducted in accordance with applicable laws and regulations, GCPs, and the ethical principles that have their origin in the Declaration of Helsinki.

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917CrossRefPubMedGoogle Scholar
  2. 2.
    Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES, Thibodeau S, Adjei AA, Jett J, Deschamps C (2005) Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 128(1):452–462CrossRefPubMedGoogle Scholar
  3. 3.
    Paz-Ares L, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P, Molinier O, Sahoo TP, Laack E, Reck M, Corral J, Melemed S, John W, Chouaki N, Zimmermann AH, Visseren-Grul C, Gridelli C (2012) Maintenance therapy with pemetrexed plus best supportive care versus placebo plus best supportive care after induction therapy with pemetrexed plus cisplatin for advanced non-squamous non-small-cell lung cancer (PARAMOUNT): a double-blind, phase 3, randomised controlled trial. Lancet Oncol 13(3):247–255CrossRefPubMedGoogle Scholar
  4. 4.
    Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U, Digumarti R, Zukin M, Lee JS, Mellemgaard A, Park K, Patil S, Rolski J, Goksel T, de Marinis F, Simms L, Sugarman KP, Gandara D (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clini Oncol 26(21):3543–3551CrossRefGoogle Scholar
  5. 5.
    Manegold C, Gatzemeier U, von Pawel J, Pirker R, Malayeri R, Blatter J, Krejcy K (2000) Front-line treatment of advanced non-small-cell lung cancer with MTA (LY231514, pemetrexed disodium, ALIMTA) and cisplatin: a multicenter phase II trial. Annals of Oncol 11(4):435–440CrossRefGoogle Scholar
  6. 6.
    Shepherd FA, Dancey J, Arnold A, Neville A, Rusthoven J, Johnson RD, Fisher B, Eisenhauer E (2001) Phase II study of Pemetrexed disodium, a multitargeted antifolate, and cisplatin as first-line therapy in patients with advanced nonsmall cell lung carcinoma: a study of the national cancer institute of Canada clinical trials group. Cancer 92(3):595–600CrossRefPubMedGoogle Scholar
  7. 7.
    Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501CrossRefPubMedGoogle Scholar
  8. 8.
    Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68(6):1636–1644PubMedGoogle Scholar
  9. 9.
    Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459PubMedCentralPubMedGoogle Scholar
  10. 10.
    Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65(15):6835–6842CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao H, Watkins JL, Piwnica-Worms H (2002) Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 99(23):14795–14800PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Merry C, Fu K, Wang J, Yeh IJ, Zhang Y (2010) Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle 9(2):279–283PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Tse AN, Carvajal R, Schwartz GK (2007) Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res 13(7):1955–1960CrossRefPubMedGoogle Scholar
  14. 14.
    Xiao Z, Xue J, Sowin TJ, Rosenberg SH, Zhang H (2005) A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene 24(8):1403–1411CrossRefPubMedGoogle Scholar
  15. 15.
    Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W, Sowers R, Gonen M, O’Reilly E, Kemeny N, Ilson DI, Saltz LB, Maki RG, Kelsen DP, Schwartz GK (2005) Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J Clin Oncol 23(9):1875–1884CrossRefPubMedGoogle Scholar
  16. 16.
    Lara PN Jr, Mack PC, Synold T, Frankel P, Longmate J, Gumerlock PH, Doroshow JH, Gandara DR (2005) The cyclin-dependent kinase inhibitor UCN-01 plus cisplatin in advanced solid tumors: a California cancer consortium phase I pharmacokinetic and molecular correlative trial. Clin Cancer Res 11(12):4444–4450CrossRefPubMedGoogle Scholar
  17. 17.
    Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O’Connor P, Anderes K (2008) Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 7(8):2394–2404CrossRefPubMedGoogle Scholar
  18. 18.
    Janetka JW, Ashwell S, Zabludoff S, Lyne P (2007) Inhibitors of checkpoint kinases: from discovery to the clinic. Curr Opin Drug Discov Devel 10(4):473–486PubMedGoogle Scholar
  19. 19.
    Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO, Tai A, Wagner JM, Miller N, Kim YD, Robertson S, Murray L, Karnitz LM (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6(1):104–110CrossRefPubMedGoogle Scholar
  20. 20.
    Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM, Canman CE, Normolle DP, Zabludoff SD, Maybaum J, Lawrence TS (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70(12):4972–4981PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M, Ma S, Moler EJ, Ni ZJ, Lopes de Menezes DE, Hibner B, Gesner TG, Schwartz GK (2007) CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clini Cancer Res 13(2 Pt 1):591–602CrossRefGoogle Scholar
  22. 22.
    Walton MI, Eve PD, Hayes A, Valenti M, De Haven BA, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynaud FI, Williams DH, Reader JC, Collins I, Garrett MD (2010) The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther 9(1):89–100CrossRefPubMedGoogle Scholar
  23. 23.
    Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7(9):2955–2966CrossRefPubMedGoogle Scholar
  24. 24.
    Wagner JM, Karnitz LM (2009) Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 76(1):208–214PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M, Navarra S, Lotti F, Biffoni M, Pilozzi E, Duranti E, Martinelli S, Rinaldo C, Zeuner A, Maugeri-Sacca M, Eramo A, De Maria R (2012) Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 19(5):768–778PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Gadhikar MA, Sciuto MR, Ortega Alves MV, Pickering CR, Osman AA, Neskey DM, Zhao M, Fitzgerald AL, Myers JN, Frederick MJ (2013) Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther 12(9):1860–1873PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Min SH, Goldman ID, Zhao R (2008) Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed. Cancer Chemother Pharmacol 61(5):819–827CrossRefPubMedGoogle Scholar
  28. 28.
    Stark GR, Taylor WR (2006) Control of the G2/M transition. Mol Biotechnol 32(3):227–248CrossRefPubMedGoogle Scholar
  29. 29.
    King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M (2013) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Investigational New DrugsGoogle Scholar
  30. 30.
    Marshall M, Barda D, Barnard D, Cox K, Diaz HB, King C, Nutter S, Westin E (2009) Characterization and preclinical development of LCI-1, a selective and potent Chk1 inhibitor in phase 1 clinical trials. Mol Cancer Ther (presented) 8 (B248) Google Scholar
  31. 31.
    Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Investig New Drugs 31(1):136–144CrossRefGoogle Scholar
  32. 32.
    Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photon sources. I. Methods. ORNL/TM-8381 V 1:1987Google Scholar
  33. 33.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of Canada. J Natl Cancer Inst 92(3):205–216CrossRefPubMedGoogle Scholar
  34. 34.
    Rollins KD, Lindley C (2005) Pemetrexed: a multitargeted antifolate. Clin Ther 27(9):1343–1382CrossRefPubMedGoogle Scholar
  35. 35.
    Chen VJ, Bewley JR, Andis SL, Schultz RM, Iversen PW, Shih C, Mendelsohn LG, Seitz DE, Tonkinson JL (1998) Preclinical cellular pharmacology of LY231514 (MTA): a comparison with methotrexate, LY309887 and raltitrexed for their effects on intracellular folate and nucleoside triphosphate pools in CCRF-CEM cells. Br J Cancer 78(Suppl 3):27–34PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Nottebrock H, Then R (1977) Thymidine concentrations in serum and urine of different animal species and man. Biochem Pharmacol 26(22):2175–2179CrossRefPubMedGoogle Scholar
  37. 37.
    Raghunathan K, Schmitz JC, Priest DG (1997) Impact of schedule on leucovorin potentiation of fluorouracil antitumor activity in dietary folic acid deplete mice. Biochem Pharmacol 53(8):1197–1202CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emiliano Calvo
    • 1
    Email author
  • Victor J. Chen
    • 2
  • Mark Marshall
    • 2
  • Ute Ohnmacht
    • 2
  • Scott M. Hynes
    • 2
  • Elizabeth Kumm
    • 3
  • H. Bruce Diaz
    • 2
  • Darlene Barnard
    • 2
  • Farhana F. Merzoug
    • 2
  • Lysiane Huber
    • 2
  • Lisa Kays
    • 2
  • Philip Iversen
    • 2
  • Antonio Calles
    • 1
    • 4
  • Beatrice Voss
    • 5
  • Aimee Bence Lin
    • 2
  • Nicolas Dickgreber
    • 6
  • Thomas Wehler
    • 5
  • Martin Sebastian
    • 7
  1. 1.START Madrid, Clara Campal Comprehensive Cancer CenterMedical Oncology Division, Madrid Norte Sanchinarro University HospitalMadridSpain
  2. 2.Eli Lilly and CompanyIndianapolisUSA
  3. 3.inVentiv Health Clinical, LLCSomersetUSA
  4. 4.Spanish National Cancer Research Centre (CNIO)MadridSpain
  5. 5.Department of Internal Medicine, Hematology and OncologyJohannes Gutenberg-University MainzMainzGermany
  6. 6.Department of Respiratory Medicine and Thoracic OncologyMathias-Spital RheineRheineGermany
  7. 7.Department of Hematology/OncologyRheumatology, HIV, J.W. Goethe UniversityFrankfurtGermany

Personalised recommendations