Skip to main content

Advertisement

Log in

Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly develop resistance to this line of treatment creating a critical need for alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as measured directly and through a subsequent heat shock response with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through mismatch repair mutations. These studies suggest great clinical potential for the utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the standard chemotherapeutic agent TMZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ACS (2013) Cancer facts and figures 2013. American Cancer Society, Atlanta [cited 2013 November 20]

    Google Scholar 

  2. Gillingham FJ, Yamashita J (1975) The effect of radiotherapy for glioblastoma: a review of 516 cases (author’s transl). No Shinkei Geka 3(4):329–336

    CAS  PubMed  Google Scholar 

  3. Onoyama Y et al (1976) Radiation therapy in the treatment of glioblastoma. AJR Am J Roentgenol 126(3):481–492

    Article  CAS  PubMed  Google Scholar 

  4. Sheline GE (1977) Radiation therapy of brain tumors. Cancer 39(2 Suppl):873–881

    Article  CAS  PubMed  Google Scholar 

  5. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20(5):1375–1382

    Article  CAS  PubMed  Google Scholar 

  7. DeAngelis LM (2005) Chemotherapy for brain tumors–a new beginning. N Engl J Med 352(10):1036–1038

    Article  CAS  PubMed  Google Scholar 

  8. Taphoorn MJ et al (2005) Health-related quality of life in patients with glioblastoma: a randomised controlled trial. Lancet Oncol 6(12):937–944

    Article  PubMed  Google Scholar 

  9. Chamberlain MC et al (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82(1):81–83

    Article  PubMed  Google Scholar 

  10. Paz MF et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10(15):4933–4938

    Article  CAS  PubMed  Google Scholar 

  11. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  12. Hansen RJ et al (2007) Role of O6-methylguanine-DNA methyltransferase in protecting from alkylating agent-induced toxicity and mutations in mice. Carcinogenesis 28(5):1111–1116

    Article  CAS  PubMed  Google Scholar 

  13. Kitange GJ et al (2009) Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11(3):281–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Quick A et al (2010) Current therapeutic paradigms in glioblastoma. Rev Recent Clin Trials 5(1):14–27

    Article  CAS  PubMed  Google Scholar 

  15. Chamberlain MC (2010) Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother 10(10):1537–1544

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    Article  CAS  PubMed  Google Scholar 

  17. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H et al (2013) Antiproliferative withanolides from Datura wrightii. J Nat Prod 76(3):445–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Santagata S et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hahm ER et al (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. Plos One 6(8):e23354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mayola E et al (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16(10):1014–1027

    Article  CAS  PubMed  Google Scholar 

  22. Widodo N et al (2010) Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS ONE 5(10):e13536

    Article  PubMed Central  PubMed  Google Scholar 

  23. Malik F et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12(11):2115–2133

    Article  CAS  PubMed  Google Scholar 

  24. Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells. Int Immunopharmacol 9(5):614–619

    Article  CAS  PubMed  Google Scholar 

  25. Koduru S et al (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9(1):202–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yu Y et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79(4):542–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):51–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Oh JH et al (2008) Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13(12):1494–1504

    Article  CAS  PubMed  Google Scholar 

  29. Mandal C et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13(12):1450–1464

    Article  CAS  PubMed  Google Scholar 

  30. Mohan R et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7(2):115–122

    Article  CAS  PubMed  Google Scholar 

  31. Singh D et al (2007) Withania somnifera inhibits NF-kappaB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res 21(10):905–913

    Article  CAS  PubMed  Google Scholar 

  32. Samadi AK et al (2010) A novel RET inhibitor with potent efficacy against medullary thyroid cancer in vivo. Surgery 148(6):1228–1236, discussion 1236

    Article  PubMed Central  PubMed  Google Scholar 

  33. Shah N et al (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 100(9):1740–1747

    Article  CAS  PubMed  Google Scholar 

  34. Grogan PT et al (2013) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs 31(3):545–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yang HJ, Shi GQ, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound withaferin a isolated from “Indian Winter Cherry”. Mol Pharmacol 71(2):426–437

    Article  CAS  PubMed  Google Scholar 

  36. Stan SD et al (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68(18):7661–7669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Devi PU, Kamath R, Rao BS (2000) Radiosensitization of a mouse melanoma by withaferin A: in vivo studies. Indian J Exp Biol 38(5):432–437

    CAS  PubMed  Google Scholar 

  38. Samadi AK et al (2012) Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumor Biol 33(4):1179–1189

    Article  CAS  Google Scholar 

  39. Fong MY et al (2012) Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 7(7):e42265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Munagala R et al (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32(11):1697–1705

    Article  CAS  PubMed  Google Scholar 

  41. Nadkarni A et al (2012) ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J Neurooncol 110(3):349–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Samadi AK et al (2010) Withaferin A, a cytotoxic steroid from Vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J Nat Prod 73(9):1476–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Samadi AK et al (2011) A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett 312(2):158–167

    Article  CAS  PubMed  Google Scholar 

  44. Ryu CH et al (2012) Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J Biomed Biotechnol 2012:987495

    Article  PubMed Central  PubMed  Google Scholar 

  45. Puputti M et al (2006) Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4(12):927–934

    Article  CAS  PubMed  Google Scholar 

  46. Wullich B et al (1993) Amplified met gene linked to double minutes in human glioblastoma. Eur J Cancer 29A(14):1991–1995

    Article  CAS  PubMed  Google Scholar 

  47. Berezowska S, Schlegel J (2011) Targeting ErbB receptors in high-grade glioma. Curr Pharm Des 17(23):2468–2487

    Article  CAS  PubMed  Google Scholar 

  48. Potti A et al (2004) Determination of HER-2/neu overexpression and clinical predictors of survival in a cohort of 347 patients with primary malignant brain tumors. Cancer Invest 22(4):537–544

    Article  CAS  PubMed  Google Scholar 

  49. Guessous F et al (2010) An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem 10(1):28–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhang WB et al (2010) Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem 285(52):40461–40471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ansari N, Khodagholi F, Amini M (2011) 2-Ethoxy-4,5-diphenyl-1,3-oxazine-6-one activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Eur J Pharmacol 658(2–3):84–90

    Article  CAS  PubMed  Google Scholar 

  52. Qiao S et al (2012) Thiostrepton is an inducer of oxidative and proteotoxic stress that impairs viability of human melanoma cells but not primary melanocytes. Biochem Pharmacol 83(9):12

    Article  Google Scholar 

  53. Khan S, Rammeloo AW, Heikkila JJ (2012) Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS One 7(11):e50547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. D’Atri S et al (2000) Attenuation of O(6)-methylguanine-DNA methyltransferase activity and mRNA levels by cisplatin and temozolomide in jurkat cells. J Pharmacol Exp Ther 294(2):664–671

    PubMed  Google Scholar 

  55. Hirose Y et al (2003) Delayed repletion of O6-methylguanine-DNA methyltransferase resulting in failure to protect the human glioblastoma cell line SF767 from temozolomide-induced cytotoxicity. J Neurosurg 98(3):591–598

    Article  CAS  PubMed  Google Scholar 

  56. Weller M et al (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77(12):1156–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sztajnkrycer MD (2002) Valproic acid toxicity: overview and management. J Toxicol Clin Toxicol 40(6):789–801

    Article  CAS  PubMed  Google Scholar 

  58. Baer JC et al (1993) Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br J Cancer 67(6):1299–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kaina B, Margison GP, Christmann M (2010) Targeting O(6)-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67(21):3663–3681

    Article  CAS  PubMed  Google Scholar 

  60. Zheng M et al (2008) Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther 7(12):3842–3851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Citti L et al (1996) Targeting of O6-methylguanine-DNA methyltransferase (MGMT) activity by antimessenger oligonucleotide sensitizes CHO/Mex+ transfected cells to mitozolomide. Carcinogenesis 17(1):25–29

    Article  CAS  PubMed  Google Scholar 

  62. Kreth S et al (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125(5):671–681

    Article  CAS  PubMed  Google Scholar 

  63. Xie SM et al (2011) Silencing of MGMT with small interference RNA reversed resistance in human BCUN-resistant glioma cell lines. Chin Med J (Engl) 124(17):2605–2610

    CAS  Google Scholar 

  64. Strik HM et al (2012) Temozolomide dosing regimens for glioma patients. Curr Neurol Neurosci Rep 12(3):286–293

    Article  CAS  PubMed  Google Scholar 

  65. Rogakou EP et al (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275(13):9390–9395

    Article  CAS  PubMed  Google Scholar 

  66. Grover A et al (2011) Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinforma 12(Suppl 1):S30

    Article  Google Scholar 

  67. Fu J et al (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-Oncology 12(4):328–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Laurent A et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65(3):948–956

    CAS  PubMed  Google Scholar 

  69. Cabello CM, Bair WB 3rd, Wondrak GT (2007) Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs 8(12):1022–1037

    CAS  PubMed  Google Scholar 

  70. Lee JJ et al (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18(4):666–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Koul D (2008) PTEN signaling pathways in glioblastoma. Cancer Biology & Therapy 7(9):1321–1325

    Article  CAS  Google Scholar 

  72. Lino MM, Merlo A (2011) PI3Kinase signaling in glioblastoma. J Neurooncol 103(3):417–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wu J et al (2011) Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells. Chem Biol Interact 193(1):3–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to recognize Huaping Zhang (University of Kansas) for his preparation of WA. We would also like to thank the KUMC flow core facility for utilization of its resources established by a generous endowment from the Hall Foundation and by NIH Grant Number P20 RR016443 from the COBRE program of the National Center for Research Resources. We are thankful for research support provided by the Departments of Surgery at the University of Kansas Medical Center and University of Michigan as well as the University of Michigan Comprehensive Cancer Center.

Conflict of interest

None related to this work.

Role of funding sources

This work was made possible by support from the National Institutes of Health (NIH-COBRE P20 RR015563 P.I. B. Timmermann), the Institute for Advancing Medical Innovation (PI: MS Cohen), a University of Kansas Cancer Center Summer Student Training Program grant (PT Grogan), the Departments of Surgery at the University of Kansas Medical Center and University of Michigan (MS Cohen), and a University of Michigan Comprehensive Cancer Center CCSG Development award (PI: MS Cohen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Cohen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

WA treatment resulted in depletion of total protein levels in both AMPKα and TSC2 at 24-48h in both U251TMZ and U87TMZ cells. U87TMZ cells also demonstrated reduced phosphorylation of AMPKα in contrast to previous findings in U87 parental cells. U251TMZ cells display dose-dependent activating phosphorylation of AMPKα and downstream TSC2. (PPT 402 kb)

Online Resource 2

(a) 24h WA pretreatment did not prevent TMZ efficacy in TMZ-sensitive U251 and U87 parental cells as assessed by a normalized MTS assay, suggesting a lack of inhibition of functional MMR. In U251 cells, WA mildly sensitized cells to TMZ, but no sensitization was observed in U87 cells. (b) Given a described oxidative component of TMZ therapy through activation of AMPKα, markers of oxidation were assessed during combination therapy of WA and TMZ in TMZ-resistant cells. HSP32 and HSP70, known to be upregulated in response to oxidative stress, increased with WA treatment to a maximal level but were not further modulated by the presence of TMZ. Treatment with TMZ only resulted in elevated p-AMPKα in only U138 cells, but WA failed to further increase this phosphorylation in combination with TMZ. This was confirmed downstream by failure to further inhibit mTOR activation with combination therapy, suggesting efficacy of such treatment was not due to potentiated or synergized elevation in oxidation status. **p < 0.01 (PPT 791 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grogan, P.T., Sarkaria, J.N., Timmermann, B.N. et al. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32, 604–617 (2014). https://doi.org/10.1007/s10637-014-0084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0084-7

Keywords

Navigation