Investigational New Drugs

, Volume 32, Issue 4, pp 670–681 | Cite as

Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors

  • Jordi RodonEmail author
  • Irene Braña
  • Lillian L Siu
  • Maja J De Jonge
  • Natasha Homji
  • David Mills
  • Emmanuelle Di Tomaso
  • Celine Sarr
  • Lucia Trandafir
  • Cristian Massacesi
  • Ferry Eskens
  • Johanna C Bendell


Purpose The pan-Class I PI3K inhibitor buparlisib (BKM120) has shown activity in a range of preclinical cancer models. This first-in-man study was initiated to identify the maximum tolerated dose (MTD) of buparlisib (100 mg/day) and to assess safety and preliminary efficacy. Methods Patients with advanced solid tumors (N = 83) enrolled in a Phase I dose-escalation and -expansion study of single-agent buparlisib. Patients in the dose-expansion arm (n = 43) had tumor samples with PIK3CA and/or PTEN alterations. Results The most common cancers were colorectal (n = 31) and breast cancer (n = 21). Median number of prior antineoplastic regimens was four (range: 1–12). Grade 3/4 adverse events (AEs) included asthenia (12.0 %) and performance status decrease (9.6 %). Treatment-related AEs (all grades) included decreased appetite, diarrhea, nausea (each in 33 % of patients), hyperglycemia (31 %) and rash (29 %). One confirmed partial response (PR; triple-negative breast cancer) and three unconfirmed PRs (parotid gland carcinoma, epithelioid hemangiothelioma, ER + breast cancer) were reported. Tumor molecular status did not predict clinical benefit in the full study cohort, or among the colorectal or breast cancer subpopulations. Pharmacodynamic biomarkers (18F-FDG-PET, C-peptide, pS6) demonstrated dose-dependent changes; however, tumor heterogeneity precluded a clear correlation with clinical benefit. Conclusion Buparlisib was well tolerated up to the 100 mg/day dose and showed preliminary activity in patients with advanced cancers. Future studies in more homogeneous patient populations will evaluate buparlisib in combination with other agents and further investigate the use of predictive biomarkers.


Buparlisib BKM120 Oncology PI3K inhibitor Targeted therapy Solid tumors 



The following members of the Vall d’Hebron study team are thanked for their contributions to the study: Dr Begoña Graña, Dr Cristina Cruz, Dr Javier Cortes, Dr Cristina Saura, Dr Rodrigo Dienstmann, and Adelaida Piera. From SCRI: Dr Howard Burris, Dr Jeffrey Infante, and Dr Suzanne Jones. Diane van der Biessen and Leni van Doorn of the Erasmus MC Cancer Institute are also thanked for their contributions. Karyn McKeever, Lindsay Carlsson, and Monika Wizemann of the Princess Margaret Cancer Centre are also thanked for their contributions. Douglas Robinson of the Novartis Institute for Biomedical Research is thanked for his statistical expertise. Lea Dutta, previously of Novartis Pharmaceuticals, is thanked for her contributions. Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. We thank Ben Holtom for medical editorial assistance with this manuscript.

Conflict of interest

Jordi Rodon: Advisory board participation: Novartis (remunerated), Irene Braña, No conflicts of interest, Lillian L Siu: Research funding: Novartis, Maja J De Jonge: No conflicts of interest, Natasha Homji: Employed by Novartis Pharmaceuticals, David Mills: Employee of Novartis, Emmanuelle Di Tomaso: Employee of Novartis, Celine Sarr: Employee of Novartis, Lucia Trandafir: Employee of Novartis, Cristian Massacesi: Employee of Novartis, Ferry Eskens: No conflicts of interes, Johanna C Bendell: No conflicts of interest

Supplementary material

10637_2014_82_MOESM1_ESM.doc (346 kb)
Online Resource 1 (DOC 346 kb)
10637_2014_82_MOESM2_ESM.doc (87 kb)
Online Resource 2 (DOC 87 kb)
10637_2014_82_MOESM3_ESM.doc (74 kb)
Online Resource 3 (DOC 74 kb)


  1. 1.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Huang WC, Hung MC (2009) Induction of Akt activity by chemotherapy confers acquired resistance. J Formos Med Assoc 108(3):180–194Google Scholar
  3. 3.
    Nahta R, O’Regan RM (2010) Evolving strategies for overcoming resistance to HER2-directed therapy: targeting the PI3K/Akt/mTOR pathway. Clin Breast Cancer 10(Suppl 3):S72–S78CrossRefPubMedGoogle Scholar
  4. 4.
    Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 29(33):4452–4461PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kolasa IK, Rembiszewska A, Felisiak A, Ziolkowska-Seta I, Murawska M, Moes J et al (2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol Ther 8(1):21–26CrossRefPubMedGoogle Scholar
  6. 6.
    Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068Google Scholar
  8. 8.
    Cancer Genome Atlas Research Network, Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R et al (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525CrossRefGoogle Scholar
  9. 9.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  10. 10.
    Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11(2):317–328CrossRefPubMedGoogle Scholar
  11. 11.
    Koul D, Shen R, LaFortune TA, Tiao N, Kim YW, Liu JL et al (2010) NVP-BKM120: a selective pan-PI3 kinase inhibitor induces G2/M arrest in glioma cell lines via FOXO3a and GADD45a loop. American Association for Cancer Research Congress. [abstract 350]Google Scholar
  12. 12.
    Schnell CR, Arnal S, Becquet M, Allegrini P, Voliva C, Cozens R et al (2010) NVP-BKM120, a pan class I PI3K inhibitor impairs microvascular permeability and tumor growth as detected by DCE-MRI and IFP measurements via radio-telemetry: comparison with NVP-BEZ235. American Association for Cancer Research Congress. [abstract 4472]Google Scholar
  13. 13.
    Maira M, Menezes D, Pecchi S, Shoemaker K, Burger M, Schnell C et al (2010) NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in phase I/II clinical trials, shows significant antitumor activity in xenograft and primary tumor models. AACR Meeting Abstracts. 4497 (abstract)Google Scholar
  14. 14.
    Voliva CF, Pecchi S, Burger M, Nagel T, Schnell C, Fritsch C et al (2010) Biological characterization of NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in phase I/II clinical trials. AACR Meeting Abstracts 4498 (abstract)Google Scholar
  15. 15.
    Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D et al (2012) Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 30(3):282–290CrossRefPubMedGoogle Scholar
  16. 16.
    Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097CrossRefPubMedGoogle Scholar
  17. 17.
    Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Babb J, Rogatko A, Zacks S (1998) Cancer Phase I clinical trials: efficient dose escalation with overdose control. Stat Med 17(10):1103–1120CrossRefPubMedGoogle Scholar
  19. 19.
    Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. european organization for research and treatment of cancer (EORTC) PET study group. Eur J Cancer 35(13):1773–1782CrossRefPubMedGoogle Scholar
  20. 20.
    Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441(7091):366–370CrossRefPubMedGoogle Scholar
  21. 21.
    Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96CrossRefPubMedGoogle Scholar
  22. 22.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Von Hoff DD, LoRusso P, Tibes R, Shapiro G, Weiss GJ, Ware JA et al (2010) A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. ASCO Meeting Abstracts 28(15_suppl):2541Google Scholar
  24. 24.
    Peyton JD, Rodon Ahnert J, Burris H, Britten C, Chen LC, Tabernero J et al (2011) A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. ASCO Meeting Abstracts 29(15_suppl):3066Google Scholar
  25. 25.
    Wagner AJ, Bendell JC, Dolly S, Morgan JA, Ware JA, Fredrickson J et al (2011) A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol 29(suppl):abstract 3020 (poster presentation)Google Scholar
  26. 26.
    Munster PN, van der Noll R, Voest EE, Dees EC, Tan AR, Specht JM et al (2011) Phase I first-in-human study of the PI3 kinase inhibitor GSK2126458 (GSK458) in patients with advanced solid tumors (study P3K112826). ASCO Meeting Abstracts 29(15_suppl):3018Google Scholar
  27. 27.
    Nanni P, Nicoletti G, Palladini A, Croci S, Murgo A, Ianzano ML et al (2012) Multiorgan metastasis of human HER-2(+) breast cancer in Rag2(−/−);Il2rg(−/−) mice and treatment with PI3K inhibitor. PLoS One 7(6):e39626PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Tohda C, Nakanishi R, Kadowaki M (2009) Hyperactivity, memory deficit and anxiety-related behaviors in mice lacking the p85alpha subunit of phosphoinositide-3 kinase. Brain Dev 31(1):69–74CrossRefPubMedGoogle Scholar
  29. 29.
    Ackermann TF, Hortnagl H, Wolfer DP, Colacicco G, Sohr R, Lang F et al (2008) Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cell Physiol Biochem 22(5–6):735–744CrossRefPubMedGoogle Scholar
  30. 30.
    Kalkman HO (2006) The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 110(1):117–134CrossRefPubMedGoogle Scholar
  31. 31.
    A phase I dose escalation study of BKM120 with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma - (NCT01473901) [homepage on the Internet]. [cited 4/3/2013]Google Scholar
  32. 32.
    Safety and efficacy of BKM120 in combination with trastuzumab in patients with relapsing HER2 overexpressing breast cancer who have previously failed trastuzumab - (NCT01132664) [homepage on the Internet]. [cited 4/3/2013]Google Scholar
  33. 33.
    Mortazavi-Jehanno N, Giraudet AL, Champion L, Lerebours F, Le Stanc E, Edeline V et al (2012) Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 39(3):450–460CrossRefPubMedGoogle Scholar
  34. 34.
    Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ et al (2011) Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res 17(10):3304–3315CrossRefPubMedGoogle Scholar
  35. 35.
    McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB et al (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 30(14):1628–1634CrossRefPubMedGoogle Scholar
  36. 36.
    Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J et al (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for a mouse model of BRCA1-related breast cancer. Cancer Discov 2(11):1048–1063PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kelly CJ, Hussien K, Muschel RJ (2012) 3D tumour spheroids as a model to assess the suitability of [18F]FDG-PET as an early indicator of response to PI3K inhibition. Nucl Med Biol 39(7):986–992CrossRefPubMedGoogle Scholar
  38. 38.
    Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T et al (2010) Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 120(8):2858–2866PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Rexer BN, Chanthaphaychith S, Dahlman KB, Arteaga CL (2014) Direct inhibition of PI3K in combination with dual HER2 inhibitors is required for optimal antitumor activity in HER2+ breast cancer cells. Breast Cancer Res 16(1):R9PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Juric D, Rodon J, Gonzalez-Angulo AM, Burris HA, Bendell J, Berlin JD et al (2012) In: BYL719, a next generation PI3K alpha specific inhibitor: preliminary safety, PK, and efficacy results from the first-in-human study.{2D8C569E-B72C-4E7D-AB3B-070BEC7EB280}. p. Abstract nr CT-01
  41. 41.
    Huang A, Fritsch C, Wilson C, Reddy A, Liu M, Lehar J et al (2012) Single agent activity of PIK3CA inhibitor BYL719 in a broad cancer cell line panel. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, Illinois. Philadelphia (PA): AACR Abstract nr 3749Google Scholar
  42. 42.
    Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454(7205):776–779PubMedCentralPubMedGoogle Scholar
  43. 43.
    Wee S, Wiederschain D, Maira SM, Loo A, Miller C, de Beaumont R et al (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A 105(35):13057–62PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Juric D, Baselga J (2012) Tumor genetic testing for patient selection in phase I clinical trials: the case of PI3K inhibitors. J Clin Oncol 30(8):765–766CrossRefPubMedGoogle Scholar
  45. 45.
    Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jordi Rodon
    • 1
    • 2
    • 11
    Email author
  • Irene Braña
    • 1
    • 2
  • Lillian L Siu
    • 3
  • Maja J De Jonge
    • 4
  • Natasha Homji
    • 5
  • David Mills
    • 6
  • Emmanuelle Di Tomaso
    • 7
  • Celine Sarr
    • 8
  • Lucia Trandafir
    • 9
  • Cristian Massacesi
    • 9
  • Ferry Eskens
    • 4
  • Johanna C Bendell
    • 10
  1. 1.Vall d’Hebron University HospitalBarcelonaSpain
  2. 2.Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Princess Margaret Cancer CentreTorontoCanada
  4. 4.Erasmus MC Cancer InstituteRotterdamThe Netherlands
  5. 5.Novartis PharmaceuticalsFlorham ParkUSA
  6. 6.Novartis Pharma AGBaselSwitzerland
  7. 7.Novartis Institutes for BioMedical Research, Inc.CambridgeUSA
  8. 8.Novartis PharmaceuticalsEast HanoverUSA
  9. 9.Novartis OncologyParisFrance
  10. 10.Sarah Cannon Research InstituteNashvilleUSA
  11. 11.Medical Oncology DepartmentVall d’Hebrón University HospitalBarcelonaSpain

Personalised recommendations