Investigational New Drugs

, Volume 32, Issue 3, pp 424–435 | Cite as

Radiosensitizing activity of a novel Benzoxazine through the promotion of apoptosis and inhibition of DNA repair

  • Suraj Radhamani
  • Christopher Bradley
  • Terri Meehan-Andrews
  • Saleh K. Ihmaid
  • Jasim Al-Rawi


The DNA dependant protein kinase (DNA-PK) enzyme plays a major part in the repair of double stranded breaks induced by radiation and hence in the radio-resistance of tumour cells. Inhibitors of DNA-PK have been tested successfully in the past for their ability to sensitize cancer cells to the effects of radiation. Here we present a novel benzoxazine, 8-methyl-2-(morpholine-4yl)-7-(pyridine-3-methoxy)-4H-1,3-benzoxacine-4-one (LTU27) and analyse its ability to cause sensitization of lung cancer and colon cancer cells to radiation. There was a significant reduction in survival rate, increase in apoptosis and inhibition in autophosphorylation of DNA-PK and AKT1 after treating them concomitantly with both radiation and LTU27. The mechanism of action appears to be through inhibition of DNA-PK leading to delayed DNA repair and promotion of apoptosis.


Radiosensitizing Colon cancer Lung cancer DNA-PK Benzoxazines 



The authors would like to thank the staff of Peter MacCallum Bendigo Radiotherapy Centre for their support and technical assistance for irradiation of cell lines. We also would like to thank Professor Roger Martin, head of the molecular radiation biology and research division and Andrea Smith, Peter MacCallum cancer centre, Melbourne for their valuable advice and support. Suraj Radhamani was a recipient of Latrobe University Postgraduate Research scholarship (LTUPS) and Full fee Research scholarship (LTUFFRS), with additional research funding by Latrobe University.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    De Schutter H, Nuyts S (2009) Radiosensitizing Potential of Epigenetic Anticancer Drugs. Anti-Cancer Agent Me 9(1):99–108CrossRefGoogle Scholar
  2. 2.
    Willner J, Flentje M (1999) Radiochemotherapy with Taxol for locally advanced non-small-cell lung cancer. Strahlenther Onkol 175:14–19CrossRefPubMedGoogle Scholar
  3. 3.
    Bogdanov KV, Chukhlovin AB, Zaritskey AY, Frolova OI, Afanasiev BV (1997) Ultraviolet irradiation induces multiple DNA double-strand breaks and apoptosis in normal granulocytes and chronic myeloid leukaemia blasts. Brit J Haematol 98(4):869–872CrossRefGoogle Scholar
  4. 4.
    Dextraze ME, Gantchev T, Girouard S, Hunting D (2010) DNA interstrand cross-links induced by ionizing radiation: An unsung lesion. Mutat Res-Rev Mutat 704(1–3):101–107. doi: 10.1016/j.mrrev.2009.12.007 CrossRefGoogle Scholar
  5. 5.
    Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M (2009) Hyperactivation of DNA-PK by Double-Strand Break Mimicking Molecules Disorganizes DNA Damage Response. PLoS One 4 (7). doi:Artn E6298 Doi  10.1371/Journal.Pone.0006298
  6. 6.
    Jankovic M, Nussenzweig A, Nussenzweig MC (2007) Antigen receptor diversification and chromosome translocations. Nat Immunol 8(8):801–808. doi: 10.1038/Ni1498 CrossRefPubMedGoogle Scholar
  7. 7.
    Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y, Kobayashi J, Komatsu K, Fukumoto M (2010) Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene 29(34):4826–4837. doi: 10.1038/onc.2010.238 CrossRefPubMedGoogle Scholar
  8. 8.
    Olsen BB, Wang SY, Svenstrup TH, Chen BP, Guerra B (2012) Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. Bmc Mol Biol 13:7. doi: 10.1186/1471-2199-13-7 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Costantini S, Woodbine L, Andreoli L, Jeggo PA, Vindigni A (2007) Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. DNA Repair (Amst) 6(6):712–722. doi: 10.1016/j.dnarep.2006.12.007 CrossRefGoogle Scholar
  10. 10.
    Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Leesmiller SP, Anderson CW, Jackson SP (1995) DNA-Dependent Protein-Kinase Catalytic Subunit - a Relative of Phosphatidylinositol 3-Kinase and the Ataxia-Telangiectasia Gene-Product. Cell 82(5):849–856. doi: 10.1016/0092-8674(95)90482-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13(2):225–231. doi: 10.1016/S0955-0674(00)00201-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Dragoi AM, Fu XY, Ivanov S, Zhang P, Sheng LB, Wu DQ, Li GC, Chu WM (2005) DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. Embo J 24(4):779–789. doi: 10.1038/sj.emboj.7600539 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, Gabra H (2011) DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance. Neoplasia 13(11):1069–U1114. doi: 10.1593/Neo.111032 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Begg AC, Stewart FA, Vens C (2011) GENOMIC INSTABILITY IN CANCER Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253. doi: 10.1038/Nrc3007 CrossRefPubMedGoogle Scholar
  15. 15.
    Fraser M, Leung BM, Yan XJ, Dan HC, Cheng JQ, Tsang BK (2003) p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res 63(21):7081–7088PubMedGoogle Scholar
  16. 16.
    Molina JR, Hayashi Y, Stephens C, Georgescu MM (2010) Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation. Neoplasia 12(6):453–U437. doi: 10.1593/Neo.10126 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi: 10.1038/Mrc839 CrossRefPubMedGoogle Scholar
  18. 18.
    Bozulic L, Surucu B, Hynx D, Hemmings BA (2008) PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30(2):203–213. doi: 10.1016/j.molcel.2008.02.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Feng JH, Park J, Cron P, Hess D, Hemmings BA (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279(39):41189–41196. doi: 10.1074/jbc.M406731200 CrossRefPubMedGoogle Scholar
  20. 20.
    Kim CH, Park SJ, Lee SH (2002) A targeted inhibition of DNA-dependent protein kinase sensitizes breast cancer cells following ionizing radiation. Journal of Pharmacology and Experimental Therapeutics 303(2):753–759. doi: 10.1124/jpet.102.038505 CrossRefPubMedGoogle Scholar
  21. 21.
    Pajonk F, van Ophoven A, Weissenberger C, McBride WH (2005) The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism. BMC Cancer 5:76. doi: 10.1186/1471-2407-5-76 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Martin NMB (2001) DNA repair inhibition and cancer therapy. J Photoch Photobio B 63(1–3):162–170CrossRefGoogle Scholar
  23. 23.
    Murr MDE, Cano C, Golding BT, Hardcastle IR, Hummersome M, Frigerio M, Curtin NJ, Menear K, Richardson C, Smith GCM, Griffin RJ (2008) 8-biarylchromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK). Bioorg Med Chem Lett 18(17):4885–4890. doi: 10.1016/j.bmcl.2008.07.066 CrossRefGoogle Scholar
  24. 24.
    Yano H, Agatsuma T, Nakanishi S, Saitoh Y, Fukui Y, Nonomura Y, Matsuda Y (1995) Biochemical and Pharmacological Studies with Kt7692 and Ly294002 on the Rare of Phosphatidylinositol 3-Kinase in Fc-Epsilon-Ri-Mediated Signal-Transduction. Biochem J 312:145–150PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Poh TW, Pervaiz S (2005) LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-akt pathway. Cancer Res 65(14):6264–6274. doi: 10.1158/0008-5472.Can-05-0152 CrossRefPubMedGoogle Scholar
  26. 26.
    Dibiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60(5):1245–1253PubMedGoogle Scholar
  27. 27.
    Rosenzweig KE, Youmell MB, Palayoor ST, Price BD (1997) Radiosensitization of human tumor cells by the phosphatidylinositol 3-kinase inhibitors Wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G(2)-M delay. Clinical Cancer Research 3(7):1149–1156PubMedGoogle Scholar
  28. 28.
    Hollick JJ, Golding BT, Hardcastle IR, Martin N, Richardson C, Rigoreau LJ, Smith GC, Griffin RJ (2003) 2,6-disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-Dependent protein kinase (DNA-PK). Bioorg Med Chem Lett 13(18):3083–3086CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ, Calvert AH, Newell DR, Smith GCM, Curtin NJ (2006) Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66(10):5354–5362. doi: 10.1158/0008-5472.Can-05-4275 CrossRefPubMedGoogle Scholar
  30. 30.
    Mukherjee B, Tomimatsu N, Amancherla K, Camacho CV, Pichamoorthy N, Burma S (2012) The Dual PI3K/mTOR Inhibitor NVP-BEZ235 Is a Potent Inhibitor of ATM- and DNA-PKCs-Mediated DNA Damage Responses. Neoplasia 14(1):34–U53. doi: 10.1593/Neo.111512 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Ihmaid SK, Al-Rawi JMA, Bradley CJ, Angove MJ, Robertson MN (2012) Synthesis, DNA-PK inhibition, anti-platelet activity studies of 2-(N-substituted-3-aminopyridine)-substituted-1,3-benzoxazines and DNA-PK and PI3K inhibition, homology modelling studies of 2-morpholino-(7,8-di and 8-substituted)-1,3-benzoxazines. Eur J Med Chem 57:85–101. doi: 10.1016/j.ejmech.2012.08.035 CrossRefPubMedGoogle Scholar
  32. 32.
    Lee CM, Fuhrman CB, Planelles V, Peltier MR, Gaffney DK, Soisson AP, Dodson MK, Tolley HD, Green CL, Zempolich KA (2006) Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clin Cancer Res 12(1):250–256. doi: 10.1158/1078-0432.Ccr-05-1084 CrossRefPubMedGoogle Scholar
  33. 33.
    Izzard RA, Jackson SP, Smith GCM (1999) Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res 59(11):2581–2586PubMedGoogle Scholar
  34. 34.
    Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, Gronning LM, Chong ML, Anagnostou SH, Jackson SP, Daniele N, Shepherd PR (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404:449–458. doi: 10.1042/Bj20070003 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Veuger SJ, Curtin NJ, Richardson CJ, Smith GCM, Durkacz BW (2003) Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63(18):6008–6015PubMedGoogle Scholar
  36. 36.
    Bromley R, Oliver L, Davey R, Harvie R, Baldock C (2009) Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model. Phys Med Biol 54(2):187–206. doi: 10.1088/0031-9155/54/2/002 CrossRefPubMedGoogle Scholar
  37. 37.
    Bromley R, Davey R, Oliver L, Harvie R, Baldock C (2006) A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern. Phys Med Biol 51(15):3639–3651. doi: 10.1088/0031-9155/51/15/003 CrossRefPubMedGoogle Scholar
  38. 38.
    Buch K, Peters T, Nawroth T, Sanger M, Schmidberger H, Langguth P (2012) Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay - A comparative study. Radiat Oncol 7. doi:Artn 1 Doi  10.1186/1748-717x-7-1
  39. 39.
    Pauwels B, Korst AEC, de Pooter CMJ, Pattyn GGO, Lambrechts HAJ, Baay MFD, Lardon F, Vermorken JB (2003) Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemoth Pharm 51(3):221–226. doi: 10.1007/s00280-002-0557-9 Google Scholar
  40. 40.
    Zhou Y, Gwadry FG, Reinhold WC, Miller LD, Smith LH, Scherf U, Liu ET, Kohn KW, Pommier Y, Weinstein JN (2002) Transcriptional regulation of mitotic genes by camptothecin-induced DNA damage: Microarray analysis of dose- and time-dependent effects. Cancer Res 62(6):1688–1695PubMedGoogle Scholar
  41. 41.
    Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). The Journal of biological chemistry 269(7):5241–5248PubMedGoogle Scholar
  42. 42.
    Wang TS, Kuo CF, Jan KY, Huang HM (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169(2):256–268. doi: 10.1002/(Sici)1097-4652(199611)169:2<256::Aid-Jcp5>3.0.Co;2-N CrossRefPubMedGoogle Scholar
  43. 43.
    Yuan XL, Shan YJ, Zhao ZH, Chen JP, Cong YW (2005) G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol J 2. doi:Artn 66 Doi  10.1186/1743-422x-2-66
  44. 44.
    Frankfurt O, Krishan A (2008) Application of Anti-ssDNA Monoclonal Antibody to Study Exogenous and Apoptosis-Associated DNA Damage. Cytom Part A 73A(12):1114–1115. doi: 10.1002/Cyto.A.20629 CrossRefGoogle Scholar
  45. 45.
    Liang K, Lu Y, Jin WD, Ang KK, Milas L, Fan Z (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2(11):1113–1120PubMedGoogle Scholar
  46. 46.
    Nutley BP, Smith NF, Hayes A, Kelland LR, Brunton L, Golding BT, Smith GCM, Martin NMB, Workman P, Raynaud FI (2005) Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Brit J Cancer 93(9):1011–1018. doi: 10.1038/sj.bjc.6602823 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Munck JM, Batey MA, Zhao Y, Jenkins H, Richardson CJ, Cano C, Tavecchio M, Barbeau J, Bardos J, Cornell L, Griffin RJ, Menear K, Slade A, Thommes P, Martin NMB, Newell DR, Smith GCM, Curtin NJ (2012) Chemosensitization of Cancer Cells by KU-0060648, a Dual Inhibitor of DNA-PK and PI-3K. Mol Cancer Ther 11(8):1789–1798. doi: 10.1158/1535-7163.Mct-11-0535 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Redon C, Boon C, Johnson K, Bonner WM, Rogakou EP (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. Mol Biol Cell 10:282a–282aGoogle Scholar
  49. 49.
    Wrann S, Kaufmann MR, Wirthner R, Stiehl DP, Wenger RH (2013) HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia. Biol Chem 394(4):519–528. doi: 10.1515/hsz-2012-0311 CrossRefPubMedGoogle Scholar
  50. 50.
    Ismail IH, Wadhra TI, Hammarsten O (2007) An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res 35 (5). doi:Artn E36 Doi  10.1093/Nar/Gkl1169
  51. 51.
    Prendergast AM, Cruet-Hennequart S, Shaw G, Barry FP, Carty MP (2011) Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or gamma-irradiation. Cell Cycle 10(21):3768–3777. doi: 10.4161/cc.10.21.17972 CrossRefPubMedGoogle Scholar
  52. 52.
    Wang JH, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM (2005) Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4(5):556–570. doi: 10.1016/j.dnarep.2005.02.001 CrossRefGoogle Scholar
  53. 53.
    Francisco DC, Peddi P, Hair JM, Flood BA, Cecil AM, Kalogerinis PT, Sigounas G, Georgakilas AG (2008) Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radical Bio Med 44(4):558–569. doi: 10.1016/j.freeradbiomed.2007.10.045 CrossRefGoogle Scholar
  54. 54.
    MacPhail SH, Banath JP, Yu TY, Chu EHM, Lambur H, Olive PL (2003) Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 79(5):351–358. doi: 10.1080/0955300032000093128 CrossRefPubMedGoogle Scholar
  55. 55.
    Langland GT, Yannone SM, Langland RA, Nakao A, Guan Y, Long SB, Vonguyen L, Chen DJ, Gray JW, Chen F (2010) Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities. Oncol Rep 23(4):1021–1026PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Urushihara Y, Kobayashi J, Matsumoto Y, Komatsu K, Oda S, Mitani H (2012) DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells. Biochem Biophys Res Commun 429(3–4):131–136. doi: 10.1016/j.bbrc.2012.10.128 CrossRefPubMedGoogle Scholar
  57. 57.
    Yu M, Dai J, Huang WW, Jiao Y, Liu L, Wu M, Tan DY (2011) hMTERF4 knockdown in HeLa cells results in sub-G1 cell accumulation and cell death. Acta Bioch Bioph Sin 43(5):372–379. doi: 10.1093/Abbs/Gmr020 CrossRefGoogle Scholar
  58. 58.
    Sun PC, Tzao C, Chen BH, Liu CW, Yu CP, Jin JS (2010) Suberoylanilide hydroxamic acid induces apoptosis and sub-G1 arrest of 320 HSR colon cancer cells. J Biomed Sci 17. doi:Artn 76 Doi  10.1186/1423-0127-17-76
  59. 59.
    Kunkl A, Terranova MP, Ferlini C, Astegiano G, Mazzarello G, Scambia G, Fattorossi A (2000) Detection of apoptotic T lymphocytes in peripheral blood of human immunodeficiency virus (HIV)-infected subjects by Apostain. Cytometry 42(1):67–73. doi: 10.1002/(Sici)1097-0320(20000215)42:1<67::Aid-Cyto10>3.0.Co;2–1 CrossRefPubMedGoogle Scholar
  60. 60.
    Bressenot A, Pooya S, Bossenmeyer-Pourie C, Gauchotte G, Germain A, Chevaux JB, Coste F, Vignaud JM, Gueant JL, Peyrin-Biroulet L (2013) Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Brit J Nutr 109(4):667–677. doi: 10.1017/S0007114512001869 CrossRefPubMedGoogle Scholar
  61. 61.
    Shawi M, Chu TW, Martinez-Marignac V, Yu Y, Gryaznov SM, Johnston JB, Lees-Miller SP, Assouline SE, Autexier C, Aloyz R (2013) Telomerase Contributes to Fludarabine Resistance in Primary Human Leukemic Lymphocytes. Plos One 8 (7). doi:ARTN e70428 DOI  10.1371/journal.pone.0070428
  62. 62.
    Amrein L, Loignon M, Goulet AC, Dunn M, Jean-Claude B, Aloyz R, Panasci L (2007) Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)benzo-[h]chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA-dependent protein kinase. J Pharmacol Exp Ther 321(3):848–855. doi: 10.1124/jpet.106.118356 CrossRefPubMedGoogle Scholar
  63. 63.
    Hsu FM, Zhang S, Chen BP (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 1(1):22–34. doi: 10.3978/j.issn.2218-676X.2012.04.01 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Chen BPC, Chan DW, Kobayashi J, Burma S, Asaithamby A, Morotomi-Yano K, Botvinick E, Qin J, Chen DJ (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 280(15):14709–14715. doi: 10.1074/jbc.M408827200 CrossRefPubMedGoogle Scholar
  65. 65.
    Chen BPC, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, Lobrich M, Shiloh Y, Chen DJ (2007) Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem 282(9):6582–6587. doi: 10.1074/jbc.M611605200 CrossRefPubMedGoogle Scholar
  66. 66.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi: 10.1126/science.1106148 CrossRefPubMedGoogle Scholar
  67. 67.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664CrossRefPubMedGoogle Scholar
  68. 68.
    Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKC alpha but not S6K1. Dev Cell 11(6):859–871. doi: 10.1016/j.devcel.2006.10.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Suraj Radhamani
    • 1
  • Christopher Bradley
    • 1
    • 2
  • Terri Meehan-Andrews
    • 2
  • Saleh K. Ihmaid
    • 1
  • Jasim Al-Rawi
    • 1
  1. 1.School of Pharmacy and Applied Science, La Trobe Institute of Molecular SciencesLa Trobe UniversityBendigoAustralia
  2. 2.La Trobe Rural Health SchoolLa Trobe UniversityBendigoAustralia

Personalised recommendations