Advertisement

Investigational New Drugs

, Volume 32, Issue 1, pp 113–122 | Cite as

Multi-drug inhibition of the HER pathway in metastatic colorectal cancer: Results of a phase I study of pertuzumab plus cetuximab in cetuximab-refractory patients

  • Douglas A. Rubinson
  • Howard S. Hochster
  • David P. Ryan
  • Brian M. Wolpin
  • Nadine Jackson McCleary
  • Thomas A. Abrams
  • Jennifer A. Chan
  • Syma Iqbal
  • Heinz J. Lenz
  • Dean Lim
  • Jeffrey Rose
  • Tanios Bekaii-Saab
  • Helen X. Chen
  • Charles S. Fuchs
  • Kimmie NgEmail author
PHASE I STUDIES

Summary

Purpose Resistance to cetuximab, a monoclonal antibody against the epithelial growth factor receptor (EGFR), in colorectal cancer (CRC) may result from compensatory signaling through ErbB receptors, ErbB2/neu/HER2 (HER2) and ErbB3/HER3 (HER3). Pertuzumab is a monoclonal antibody that blocks HER2 hetero-dimerization; thus the combination of pertuzumab and cetuximab could possibly overcome cetuximab resistance. Patients and methods This single-arm, open-label, multicenter phase I/II study was designed to assess the safety and efficacy of pertuzumab and cetuximab in patients with cetuximab-resistant KRAS wild type metastatic CRC. Thirteen patients were enrolled and received cetuximab in combination with pertuzumab at several dose levels in a 3 + 3 design. Patients were assessed for dose-limiting toxicity (DLT) during the first cycle. A phase II portion was planned, but not initiated due to toxicity. Results Six of the thirteen patients (46 %) experienced DLTs, therefore the study was terminated early. Grade 3 or higher DLTs included dermatitis with desquamation and/or acneiform rash (n = 6), mucositis or stomatitis (n = 5), and diarrhea (n = 2). There was one Grade 5 event (myocardial infarction) attributed to underlying disease. Among the 13 patients, seven (54 %) were evaluable for response. The objective response rate was 14 %: one patient had a partial response lasting 6 months. Two patients had stable disease (29 %), and four had progressive disease (57 %). Median progression free survival was 2.1 months (95 % CI, 1.5–4.9) and median overall survival was 3.7 months (95 % CI, 1.6–7.9). Conclusion Combination pertuzumab and cetuximab in refractory CRC was associated with potential antitumor activity; however, the combination was not tolerable due to overlapping toxicities.

Keywords

Pertuzumab Cetuximab Phase I Phase II Colorectal Cancer 

Notes

Acknowledgments

Pertuzumab was supplied by the Cancer Therapy Evaluation Program (CTEP) of the National Cancer Institute (NCI) in Bethesda, MD. The trial was conducted under a Phase 2 Consortium contract with the NCI. Genentech also provided supplementary funding for the study.

Conflicts of interest

Dr. Hochster has received support from Genentech and Bristol-Myers Squibb. Dr. Wolpin has received support from Agensys/Astellas, Momenta Pharmaceuticals, Merrimack Pharmaceuticals, and Genentech. Dr. Lenz has served on Advisory Boards and received honoraria for lectures from Genentech. Dr. Bekaii-Saab has served as a consultant for Bristol Myers-Squibb and Genentech. Dr. Fuchs has received support from Genentech, Metamark Genetics, Sanofi, Amgen, Momenta Pharmaceuticals, Celgene, and Bayer.

References

  1. 1.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol: J American Soc Clin Oncol 22(7):1201–1208. doi: 10.1200/JCO.2004.10.182 CrossRefGoogle Scholar
  2. 2.
    Martin-Martorell P, Rosello S, Rodriguez-Braun E, Chirivella I, Bosch A, Cervantes A (2008) Biweekly cetuximab and irinotecan in advanced colorectal cancer patients progressing after at least one previous line of chemotherapy: results of a phase II single institution trial. Br J Cancer 99(3):455–458. doi: 10.1038/sj.bjc.6604530 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 27(5):663–671. doi: 10.1200/JCO.2008.20.8397 CrossRefGoogle Scholar
  4. 4.
    Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417. doi: 10.1056/NEJMoa0805019 CrossRefPubMedGoogle Scholar
  5. 5.
    Van Cutsem E, Tejpar S, Vanbeckevoort D, Peeters M, Humblet Y, Gelderblom H, Vermorken JB, Viret F, Glimelius B, Gallerani E, Hendlisz A, Cats A, Moehler M, Sagaert X, Vlassak S, Schlichting M, Ciardiello F (2012) Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 30(23):2861–2868. doi: 10.1200/JCO.2011.40.9243 CrossRefGoogle Scholar
  6. 6.
    Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 26(10):1626–1634. doi: 10.1200/JCO.2007.14.7116 CrossRefGoogle Scholar
  7. 7.
    Baselga J, Rosen N (2008) Determinants of RASistance to anti-epidermal growth factor receptor agents. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 26(10):1582–1584. doi: 10.1200/JCO.2007.15.3700 CrossRefGoogle Scholar
  8. 8.
    Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, Idziaszczyk S, Harris R, Fisher D, Kenny SL, Kay E, Mitchell JK, Madi A, Jasani B, James MD, Bridgewater J, Kennedy MJ, Claes B, Lambrechts D, Kaplan R, Cheadle JP, Investigators MCT (2011) Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377(9783):2103–2114. doi: 10.1016/S0140-6736(11)60613-2 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540. doi: 10.1038/nature11219 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Oliveras-Ferraros C, Massaguer Vall-Llovera A, Vazquez-Martin A, Salip DC, Queralt B, Cufi S, Martin-Castillo B, Bosch-Barrera J, Brunet J, De Llorens R, Menendez JA (2012) Transcriptional upregulation of HER2 expression in the absence of HER2 gene amplification results in cetuximab resistance that is reversed by trastuzumab treatment. Oncol Rep 27(6):1887–1892. doi: 10.3892/or.2012.1732 PubMedGoogle Scholar
  11. 11.
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, Cora D, Di Nicolantonio F, Buscarino M, Petti C, Ribero D, Russolillo N, Muratore A, Massucco P, Pisacane A, Molinaro L, Valtorta E, Sartore-Bianchi A, Risio M, Capussotti L, Gambacorta M, Siena S, Medico E, Sapino A, Marsoni S, Comoglio PM, Bardelli A, Trusolino L (2011) A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 1(6):508–523. doi: 10.1158/2159-8290.CD-11-0109 CrossRefPubMedGoogle Scholar
  12. 12.
    Quesnelle KM, Grandis JR (2011) Dual kinase inhibition of EGFR and HER2 overcomes resistance to cetuximab in a novel in vivo model of acquired cetuximab resistance. Clin Cancer Res: J American Assoc Cancer Res 17(18):5935–5944. doi: 10.1158/1078-0432.CCR-11-0370 CrossRefGoogle Scholar
  13. 13.
    Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2(2):127–137CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer M, Fleming GF, Hainsworth JD, Garcia AA, Pegram MD, Schilder RJ, Cohn DE, Roman L, Derynck MK, Ng K, Lyons B, Allison DE, Eberhard DA, Pham TQ, Dere RC, Karlan BY (2006) Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 24(26):4324–4332. doi: 10.1200/JCO.2005.05.4221 CrossRefGoogle Scholar
  15. 15.
    Makhija S, Amler LC, Glenn D, Ueland FR, Gold MA, Dizon DS, Paton V, Lin CY, Januario T, Ng K, Strauss A, Kelsey S, Sliwkowski MX, Matulonis U (2010) Clinical activity of gemcitabine plus pertuzumab in platinum-resistant ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 28(7):1215–1223. doi: 10.1200/JCO.2009.22.3354 CrossRefGoogle Scholar
  16. 16.
    Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM, Group CS (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119. doi: 10.1056/NEJMoa1113216 CrossRefPubMedGoogle Scholar
  17. 17.
    Pohl M, Stricker I, Schoeneck A, Schulmann K, Klein-Scory S, Schwarte-Waldhoff I, Hasmann M, Tannapfel A, Schmiegel W, Reinacher-Schick A (2009) Antitumor activity of the HER2 dimerization inhibitor pertuzumab on human colon cancer cells in vitro and in vivo. J Cancer Res Clin Oncol 135(10):1377–1386. doi: 10.1007/s00432-009-0579-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Felip E, Ranson M, Cedres S, Dean E, Brewster M, Martinez P, McNally V, Ross G, Galdermans D (2012) A phase Ib, dose-finding study of erlotinib in combination with a fixed dose of pertuzumab in patients with advanced non-small-cell lung cancer. Clin Lung Cancer. doi: 10.1016/j.cllc.2012.03.004 PubMedGoogle Scholar
  19. 19.
    Weickhardt AJ, Price TJ, Chong G, Gebski V, Pavlakis N, Johns TG, Azad A, Skrinos E, Fluck K, Dobrovic A, Salemi R, Scott AM, Mariadason JM, Tebbutt NC (2012) Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 30(13):1505–1512. doi: 10.1200/JCO.2011.38.6599 CrossRefGoogle Scholar
  20. 20.
    Tsuchida Y, Therasse P (2001) Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol 37(1):1–3. doi: 10.1002/mpo.1154 CrossRefPubMedGoogle Scholar
  21. 21.
    Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G (2005) Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology 23(11):2534–2543. doi: 10.1200/JCO.2005.03.184 CrossRefGoogle Scholar
  22. 22.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216CrossRefPubMedGoogle Scholar
  23. 23.
    Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P (1999) Measurement of clinical and subclinical tumour response using [18 F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782CrossRefPubMedGoogle Scholar
  24. 24.
    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536. doi: 10.1038/nature11156 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, Ercan D, Rogers A, Roncalli M, Takeda M, Fujisaka Y, Philips J, Shimizu T, Maenishi O, Cho Y, Sun J, Destro A, Taira K, Takeda K, Okabe T, Swanson J, Itoh H, Takada M, Lifshits E, Okuno K, Engelman JA, Shivdasani RA, Nishio K, Fukuoka M, Varella-Garcia M, Nakagawa K, Janne PA (2011) Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 3(99):99ra86. doi: 10.1126/scitranslmed.3002442 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Zhou Y, Li S, Hu YP, Wang J, Hauser J, Conway AN, Vinci MA, Humphrey L, Zborowska E, Willson JK, Brattain MG (2006) Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis. Cancer Res 66(1):404–411. doi: 10.1158/0008-5472.CAN-05-2506 CrossRefPubMedGoogle Scholar
  27. 27.
    Fields AL, Rinaldi DA, Henderson CA, Germond CJ, Chu L, Brill KJ, Leopold LH, Berger MS (2005) An open-label multicenter phase ii study of oral lapatinib (GW572016) as single agent, second-line therapy in patients with metastatic colorectal cancer. J Clin Oncol 23(16S):1Google Scholar
  28. 28.
    Ramanathan RK, Hwang JJ, Zamboni WC, Sinicrope FA, Safran H, Wong MK, Earle M, Brufsky A, Evans T, Troetschel M, Walko C, Day R, Chen HX, Finkelstein S (2004) Low overexpression of HER-2/neu in advanced colorectal cancer limits the usefulness of trastuzumab (Herceptin) and irinotecan as therapy. A phase II trial. Cancer Investigation 22(6):858–865CrossRefPubMedGoogle Scholar
  29. 29.
    Clark JW, Niedzwiecki, D., Hollis, D., Mayer, R., Cancer and Leukemia Group B Phase II trial of 5-fluorouracil (5-FU), leucovorin (LV), oxaliplatin (Ox), and trastuzumab (T) for patients with metastatic colorectal cancer (CRC) refractory to initial therapy. In: 2003 ASCO Annual Meeting, Chicago, IL, 2003. ASCOGoogle Scholar
  30. 30.
    Takahashi T, Boku N, Murakami H, Naito T, Tsuya A, Nakamura Y, Ono A, Machida N, Yamazaki K, Watanabe J, Ruiz-Garcia A, Imai K, Ohki E, Yamamoto N (2012) Phase I and pharmacokinetic study of dacomitinib (PF-00299804), an oral irreversible, small molecule inhibitor of human epidermal growth factor receptor-1, -2, and −4 tyrosine kinases, in Japanese patients with advanced solid tumors. Investigational New Drugs. doi: 10.1007/s10637-011-9789-z PubMedCentralGoogle Scholar
  31. 31.
    Su X, Lacouture ME, Jia Y, Wu S (2009) Risk of high-grade skin rash in cancer patients treated with cetuximab–an antibody against epidermal growth factor receptor: systemic review and meta-analysis. Oncology 77(2):124–133. doi: 10.1159/000229752 CrossRefPubMedGoogle Scholar
  32. 32.
    Drucker AM, Wu S, Dang CT, Lacouture ME (2012) Risk of rash with the anti-HER2 dimerization antibody pertuzumab: a meta-analysis. Breast Cancer Research and Treatment. doi: 10.1007/s10549-012-2157-7 PubMedGoogle Scholar
  33. 33.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345. doi: 10.1056/NEJMoa033025 CrossRefPubMedGoogle Scholar
  34. 34.
    Laux I, Jain A, Singh S, Agus DB (2006) Epidermal growth factor receptor dimerization status determines skin toxicity to HER-kinase targeted therapies. Br J Cancer 94(1):85–92. doi: 10.1038/sj.bjc.6602875 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    De Potter IY, Poumay Y, Squillace KA, Pittelkow MR (2001) Human EGF receptor (HER) family and heregulin members are differentially expressed in epidermal keratinocytes and modulate differentiation. Experimental Cell Research 271(2):315–328. doi: 10.1006/excr.2001.5390 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Douglas A. Rubinson
    • 1
  • Howard S. Hochster
    • 2
  • David P. Ryan
    • 3
  • Brian M. Wolpin
    • 1
  • Nadine Jackson McCleary
    • 1
  • Thomas A. Abrams
    • 1
  • Jennifer A. Chan
    • 1
  • Syma Iqbal
    • 4
  • Heinz J. Lenz
    • 4
  • Dean Lim
    • 5
  • Jeffrey Rose
    • 6
  • Tanios Bekaii-Saab
    • 7
  • Helen X. Chen
    • 8
  • Charles S. Fuchs
    • 1
  • Kimmie Ng
    • 1
    Email author
  1. 1.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Medical OncologyYale Cancer CenterNew HavenUSA
  3. 3.Massachusetts General Hospital Cancer CenterMassachusetts General HospitalBostonUSA
  4. 4.Division of Medical Oncology, Sharon A. Carpenter Laboratory, Keck School of MedicineUniversity of Southern California/Norris Comprehensive Cancer CenterLos AngelesUSA
  5. 5.Division of Medical Oncology and Therapeutics ResearchCity of Hope National Medical CenterDuarteUSA
  6. 6.Lowcountry Hematology and OncologyMount PleasantUSA
  7. 7.Department of Pharmacology, College of MedicineThe Ohio State UniversityColumbusUSA
  8. 8.Cancer Therapy Evaluation ProgramNational Cancer InstituteBethesdaUSA

Personalised recommendations