Skip to main content

Advertisement

Log in

NPS-1034, a novel MET inhibitor, inhibits the activated MET receptor and its constitutively active mutants

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The MET proto-oncogene product, which is the receptor for hepatocyte growth factor (HGF), has been implicated in tumorigenesis and metastatic progression. Point mutations in MET lead to the aberrant activation of the receptor in many types of human malignancies, and the deregulated activity of MET has been correlated with tumor growth, invasion, and metastasis. MET has therefore attracted considerable attention as a potential target in anticancer therapy. Here, we report that a novel MET kinase inhibitor, NPS-1034, inhibits various constitutively active mutant forms of MET as well as HGF-activated wild-type MET. NPS-1034 inhibited the proliferation of cells expressing activated MET and promoted the regression of tumors formed from such cells in a mouse xenograft model through anti-angiogenic and pro-apoptotic actions. NPS-1034 also inhibited HGF-stimulated activation of MET signaling in the presence or absence of serum. Furthermore, when tested on 27 different MET variants, NPS-1034 inhibited 15 of the 17 MET variants that exhibited autophosphorylation with nanomolar potency; only the F1218I and M1149T variants were not inhibited by NPS-1034. Notably, NPS-1034 inhibited three MET variants that are resistant to the MET inhibitors SU11274, NVP-BVU972, and PHA665752. Together, these results suggest that NPS-1034 can be used as a potent therapeutic agent for human malignancies bearing MET point mutations or expressing activated MET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HGF:

Hepatocyte growth factor

RTK:

Receptor tyrosine kinase

PI3K:

Phosphatidylinositide-3-kinase

MAPK:

Mitogen-activated protein kinase

SMA:

Smooth muscle actin

References

  1. Sattler M, Salgia R (2009) The MET axis as a therapeutic target. Update Cancer Ther 3(3):109–118. doi:10.1016/j.uct.2009.01.001

    Article  PubMed Central  PubMed  Google Scholar 

  2. Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, Ellmore N, Vieira W, Owens JW, Anver M, Merlino G (1998) c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 58(22):5157–5167

    CAS  PubMed  Google Scholar 

  3. Sattler M, Salgia R (2007) c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep 9(2):102–108

    Article  CAS  PubMed  Google Scholar 

  4. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225(1):1–26. doi:10.1016/j.canlet.2004.09.044

    Article  CAS  PubMed  Google Scholar 

  5. Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A, Kusunoki M (2012) Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer 130(12):2912–2921. doi:10.1002/ijc.26330

    Article  CAS  PubMed  Google Scholar 

  6. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15(7):2207–2214. doi:10.1158/1078-0432.CCR-08-1306

    Article  CAS  PubMed  Google Scholar 

  7. Lorenzato A, Olivero M, Patane S, Rosso E, Oliaro A, Comoglio PM, Di Renzo MF (2002) Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res 62(23):7025–7030

    CAS  PubMed  Google Scholar 

  8. Bellon SF, Kaplan-Lefko P, Yang Y, Zhang Y, Moriguchi J, Rex K, Johnson CW, Rose PE, Long AM, O’Connor AB, Gu Y, Coxon A, Kim TS, Tasker A, Burgess TL, Dussault I (2008) c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem 283(5):2675–2683. doi:10.1074/jbc.M705774200

    Article  CAS  PubMed  Google Scholar 

  9. Park WS, Dong SM, Kim SY, Na EY, Shin MS, Pi JH, Kim BJ, Bae JH, Hong YK, Lee KS, Lee SH, Yoo NJ, Jang JJ, Pack S, Zhuang Z, Schmidt L, Zbar B, Lee JY (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 59(2):307–310

    CAS  PubMed  Google Scholar 

  10. Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G, Comoglio PM (2000) Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19(12):1547–1555. doi:10.1038/sj.onc.1203455

    Article  PubMed  Google Scholar 

  11. Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, Johnson BE, Salgia R (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63(19):6272–6281

    CAS  PubMed  Google Scholar 

  12. Yuen HF, Abramczyk O, Montgomery G, Chan KK, Huang YH, Sasazuki T, Shirasawa S, Gopesh S, Chan KW, Fennell D, Janne P, El-Tanani M, Murray JT (2012) Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells. Biosci Rep 32(4):413–422. doi:10.1042/BSR20120050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Maritano D, Accornero P, Bonifaci N, Ponzetto C (2000) Two mutations affecting conserved residues in the Met receptor operate via different mechanisms. Oncogene 19(10):1354–1361. doi:10.1038/sj.onc.1203431

    Article  CAS  PubMed  Google Scholar 

  14. Graveel C, Su Y, Koeman J, Wang LM, Tessarollo L, Fiscella M, Birchmeier C, Swiatek P, Bronson R, Vande Woude G (2004) Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci U S A 101(49):17198–17203. doi:10.1073/pnas.0407651101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Berthou S, Aebersold DM, Schmidt LS, Stroka D, Heigl C, Streit B, Stalder D, Gruber G, Liang C, Howlett AR, Candinas D, Greiner RH, Lipson KE, Zimmer Y (2004) The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene 23(31):5387–5393. doi:10.1038/sj.onc.1207691

    Article  CAS  PubMed  Google Scholar 

  16. Zimmer Y, Vaseva AV, Medova M, Streit B, Blank-Liss W, Greiner RH, Schiering N, Aebersold DM (2010) Differential inhibition sensitivities of MET mutants to the small molecule inhibitor SU11274. Cancer Lett 289(2):228–236. doi:10.1016/j.canlet.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  17. Qi J, McTigue MA, Rogers A, Lifshits E, Christensen JG, Janne PA, Engelman JA (2011) Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res 71(3):1081–1091. doi:10.1158/0008-5472.CAN-10-1623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tiedt R, Degenkolbe E, Furet P, Appleton BA, Wagner S, Schoepfer J, Buck E, Ruddy DA, Monahan JE, Jones MD, Blank J, Haasen D, Drueckes P, Wartmann M, McCarthy C, Sellers WR, Hofmann F (2011) A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res 71(15):5255–5264. doi:10.1158/0008-5472.CAN-10-4433

    Article  CAS  PubMed  Google Scholar 

  19. Pan BS, Chan GK, Chenard M, Chi A, Davis LJ, Deshmukh SV, Gibbs JB, Gil S, Hang G, Hatch H, Jewell JP, Kariv I, Katz JD, Kunii K, Lu W, Lutterbach BA, Paweletz CP, Qu X, Reilly JF, Szewczak AA, Zeng Q, Kohl NE, Dinsmore CJ (2010) MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res 70(4):1524–1533. doi:10.1158/0008-5472.CAN-09-2541

    Article  CAS  PubMed  Google Scholar 

  20. Hong SW, Kim CJ, Park WS, Shin JS, Lee SD, Ko SG, Jung SI, Park IC, An SK, Lee WK, Lee WJ, Jin DH, Lee MS (2009) p34SEI-1 inhibits apoptosis through the stabilization of the X-linked inhibitor of apoptosis protein: p34SEI-1 as a novel target for anti-breast cancer strategies. Cancer Res 69(3):741–746. doi:10.1158/0008-5472.CAN-08-1189

    Article  CAS  PubMed  Google Scholar 

  21. Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res 86(3):506–515. doi:10.1093/cvr/cvq012

    Article  CAS  PubMed  Google Scholar 

  22. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R (2006) Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66(1):283–289. doi:10.1158/0008-5472.CAN-05-2749

    Article  CAS  PubMed  Google Scholar 

  23. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8(3):161–173

    Article  CAS  PubMed  Google Scholar 

  24. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, Chen J, Wang X, Ruslim L, Blake R, Lipson KE, Ramphal J, Do S, Cui JJ, Cherrington JM, Mendel DB (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63(21):7345–7355

    CAS  PubMed  Google Scholar 

  25. Crosswell HE, Dasgupta A, Alvarado CS, Watt T, Christensen JG, De P, Durden DL, Findley HW (2009) PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer 9:411. doi:10.1186/1471-2407-9-411

    Article  PubMed Central  PubMed  Google Scholar 

  26. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H, Kim WJ, Okimoto RA, Bell DW, Sgroi DC, Christensen JG, Settleman J, Haber DA (2006) Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A 103(7):2316–2321. doi:10.1073/pnas.0508776103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jun HT, Sun J, Rex K, Radinsky R, Kendall R, Coxon A, Burgess TL (2007) AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 13(22 Pt 1):6735–6742. doi:10.1158/1078-0432.CCR-06-2969

    Article  CAS  PubMed  Google Scholar 

  28. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A 105(2):692–697. doi:10.1073/pnas.0707270105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC (2000) Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 275(12):8806–8811

    Article  CAS  PubMed  Google Scholar 

  30. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848):287–290. doi:10.1126/science.1142946

    Article  CAS  PubMed  Google Scholar 

  31. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937. doi:10.1073/pnas.0710370104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043. doi:10.1126/science.1141478

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure of potential conflicts of interests

Yoon SJ is an employee of NeoPharm Co., Ltd., which has ownership interest, including patents, in NPS-1034.

Funding

This study was supported by grants from the Korea Health 21 R&D Project, Ministry of Health and Welfare and Family Affairs, Republic of Korea (A062254 & HI10C2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Hoon Jin or Tae Won Kim.

Additional information

Author contribution

Jae-Sik Shin, Seung-Woo Hong, and Jai-Hee Moon performed the majority of the experiments. Jin-Sun Kim, Kyung-Ah Jung, Seung-Mi Kim, Dae-Hee Lee, Chang-Gyu Lee, Eun-Kyoung Choi, and Joo-Young Lee helped with the experiments. InKi Kim, Seon-Joo Yoon, Kyu-pyo Kim, Yong-Sang Hong, Jae-Lyun Lee, Bongcheol Kim, Eun Kyung Choi, Jung Shin Lee, Dong-Hoon Jin, and Tae Won Kim analyzed the data. Dong-Hoon Jin and Tae Won Kim planned the experiments and wrote the manuscript.

Jae-Sik Shin, Seung-Woo Hong and Jai-Hee Moon contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Analysis of MET autophosphorylation after ectopic expression of the 29 MET point mutants at Tyr-1234/1235 and Tyr-1349. (GIF 15 kb)

High Resolution Image (EPS 464 kb)

Supplementary Fig. S1

NPS-1034 inhibits HGF-stimulated signaling in prostate cancer cells. a PC3 and b DU145 cells were incubated with NPS-1034 or PHA665752 with or without fetal bovine serum for 2 h, followed by treatment with HGF (25 ng/ml) for 15 min. The effects of NPS-1034 on the signaling molecules downstream of MET were evaluated by Western blot analysis using antibodies against p-MET, MET, p-AKT, p-ERK, and γ-tubulin. (GIF 23 kb)

High Resolution Image (EPS 440 kb)

Supplementary Fig. S2

Analysis of body weights after NPS-1034 treatment. (GIF 6 kb)

High Resolution Image (EPS 370 kb)

Supplementary Fig. S3

Sequencing analysis of the various point mutants of MET were constructed from MET cDNA using site-directed mutagenesis. a The histogram displays the 29 MET point mutants using Sanger sequencing methods. b The 29 MET point mutants and wild-type MET cDNA expression was confirmed by RT-PCR. c AGS cells were transfected with the expression constructs of the 29 MET point mutants and the wild-type MET cDNA. The cell lysates were analyzed using antibodies against p-MET (Y1234/1235), p-MET (Y1349), MET, and γ-tubulin. (GIF 545 kb)

High Resolution Image (EPS 425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, JS., Hong, SW., Moon, JH. et al. NPS-1034, a novel MET inhibitor, inhibits the activated MET receptor and its constitutively active mutants. Invest New Drugs 32, 389–399 (2014). https://doi.org/10.1007/s10637-013-0039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-0039-4

Keywords

Navigation