Skip to main content

Advertisement

Log in

Digalloylresveratrol, a novel resveratrol analog inhibits the growth of human pancreatic cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Digalloylresveratrol (DIG) is a recently synthesized substance aimed to combine the effects of the natural polyphenolic compounds gallic acid and resveratrol, which both are excellent free radical scavengers with anticancer activity. In this study, we investigated the effects of DIG in the human AsPC-1 and BxPC-3 pancreatic adenocarcinoma cell lines. Treatment with DIG dose-dependently attenuated cells in the S phase of the cell cycle and led to a significant depletion of the dATP pool in AsPC-1 cells. The incorporation of 14C-cytidine into nascent DNA of tumor cells was significantly inhibited at all DIG concentrations due to inhibition of ribonucleotide reductase, a key enzyme of DNA synthesis in tumor cells. Furthermore, Erk1/2 became inactivated and moderated p38 phosphorylation reflecting increased replication stress. DIG also activated ATM and Chk2, and induced the phosphorylation and proteasomal degradation of the proto-oncogene Cdc25A, which contributed to cell cycle attenuation. Taken together, DIG is an excellent free radical scavenger, strongly inhibits RR in situ activity, cell cycle progression, and colony formation in AsPC-1 and BxPC-3 cells thus warranting further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almhanna K, Philip PA (2011) Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol 12:111–125

    Article  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  Google Scholar 

  3. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  Google Scholar 

  4. Richard JL (1987) [Coronary risk factors. The French paradox]. Arch Mal Coeur Vaiss 80 Spec No:17-21

  5. Appeldoorn CC, Bonnefoy A, Lutters BC, Daenens K, van Berkel TJ, Hoylaerts MF, Biessen EA (2005) Gallic acid antagonizes P-selectin-mediated platelet-leukocyte interactions: implications for the French paradox. Circulation 111:106–112

    Article  CAS  Google Scholar 

  6. Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V (2002) Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 86:1645–1651

    Article  CAS  Google Scholar 

  7. Horvath Z, Saiko P, Illmer C, Madlener S, Hoechtl T, Bauer W, Erker T, Jaeger W, Fritzer-Szekeres M, Szekeres T (2005) Synergistic action of resveratrol, an ingredient of wine, with Ara-C and tiazofurin in HL-60 human promyelocytic leukemia cells. Exp Hematol 33:329–335

    Article  CAS  Google Scholar 

  8. Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    Article  CAS  Google Scholar 

  9. Kawada M, Ohno Y, Ri Y, Ikoma T, Yuugetu H, Asai T, Watanabe M, Yasuda N, Akao S, Takemura G, Minatoguchi S, Gotoh K, Fujiwara H, Fukuda K (2001) Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anti Cancer Drugs 12:847–852

    Article  CAS  Google Scholar 

  10. Madlener S, Illmer C, Horvath Z, Saiko P, Losert A, Herbacek I, Grusch M, Elford HL, Krupitza G, Bernhaus A, Fritzer-Szekeres M, Szekeres T (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162

    Article  CAS  Google Scholar 

  11. Shao J, Zhou B, Chu B, Yen Y (2006) Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 6:409–431

    Article  CAS  Google Scholar 

  12. Cerqueira NM, Pereira S, Fernandes PA, Ramos MJ (2005) Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy. Curr Med Chem 12:1283–1294

    Article  CAS  Google Scholar 

  13. Takeda E, Weber G (1981) Role of ribonucleotide reductase in expression in the neoplastic program. Life Sci 28:1007–1014

    Article  CAS  Google Scholar 

  14. Smith BD, Karp JE (2003) Ribonucleotide reductase: an old target with new potential. Leuk Res 27:1075–1076

    Article  Google Scholar 

  15. Nocentini G (1996) Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit Rev Oncol Hematol 22:89–126

    Article  CAS  Google Scholar 

  16. Holland KP, Elford HL, Bracchi V, Annis CG, Schuster SM, Chakrabarti D (1998) Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives. Antimicrob Agents Chemother 42:2456

    Article  CAS  Google Scholar 

  17. Noble S, Goa KL (1997) Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs 54:447–472

    Article  CAS  Google Scholar 

  18. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F (2005) Role of gemcitabine in cancer therapy. Futur Oncol 1:7–17

    Article  CAS  Google Scholar 

  19. Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta 1699:1–34

    Article  CAS  Google Scholar 

  20. Bernhaus A, Fritzer-Szekeres M, Grusch M, Saiko P, Krupitza G, Venkateswarlu S, Trimurtulu G, Jaeger W, Szekeres T (2009) Digalloylresveratrol, a new phenolic acid derivative induces apoptosis and cell cycle arrest in human HT-29 colon cancer cells. Cancer Lett 274:299–304

    Article  CAS  Google Scholar 

  21. Madlener S, Saiko P, Vonach C, Viola K, Huttary N, Stark N, Popescu R, Gridling M, Vo NT, Herbacek I, Davidovits A, Giessrigl B, Venkateswarlu S, Geleff S, Jager W, Grusch M, Kerjaschki D, Mikulits W, Golakoti T, Fritzer-Szekeres M, Szekeres T, Krupitza G (2010) Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro. Br J Cancer 102:1361–1370

    Article  CAS  Google Scholar 

  22. Garrett C, Santi DV (1979) A rapid and sensitive high pressure liquid chromatography assay for deoxyribonucleoside triphosphates in cell extracts. Anal Biochem 99:268–273

    Article  CAS  Google Scholar 

  23. Saiko P, Ozsvar-Kozma M, Bernhaus A, Jaschke M, Graser G, Lackner A, Grusch M, Horvath Z, Madlener S, Krupitza G, Handler N, Erker T, Jaeger W, Fritzer-Szekeres M, Szekeres T (2007) N-hydroxy-N′-(3,4,5-trimethoxyphenyl)-3,4,5-trimethoxy-benzamidine, a novel resveratrol analog, inhibits ribonucleotide reductase in HL-60 human promyelocytic leukemia cells: synergistic antitumor activity with arabinofuranosylcytosine. Int J Oncol 31:1261–1266

    CAS  PubMed  Google Scholar 

  24. Szekeres T, Gharehbaghi K, Fritzer M, Woody M, Srivastava A, van’t Riet B, Jayaram HN, Elford HL (1994) Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase. Cancer Chemother Pharmacol 34:63–66

    Article  CAS  Google Scholar 

  25. Saiko P, Graser G, Giessrigl B, Lackner A, Grusch M, Krupitza G, Basu A, Sinha BN, Jayaprakash V, Jaeger W, Fritzer-Szekeres M, Szekeres T (2011) A novel N-hydroxy-N′-aminoguanidine derivative inhibits ribonucleotide reductase activity: Effects in human HL-60 promyelocytic leukemia cells and synergism with arabinofuranosylcytosine (Ara-C). Biochem Pharmacol 81:50–59

    Article  CAS  Google Scholar 

  26. Grusch M, Polgar D, Gfatter S, Leuhuber K, Huettenbrenner S, Leisser C, Fuhrmann G, Kassie F, Steinkellner H, Smid K, Peters GJ, Jayaram HN, Klepal W, Szekeres T, Knasmuller S, Krupitza G (2002) Maintenance of ATP favours apoptosis over necrosis triggered by benzamide riboside. Cell Death Differ 9:169–178

    Article  CAS  Google Scholar 

  27. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    CAS  PubMed  Google Scholar 

  28. Grusch M, Fritzer-Szekeres M, Fuhrmann G, Rosenberger G, Luxbacher C, Elford HL, Smid K, Peters GJ, Szekeres T, Krupitza G (2001) Activation of caspases and induction of apoptosis by novel ribonucleotide reductase inhibitors amidox and didox. Exp Hematol 29:623–632

    Article  CAS  Google Scholar 

  29. Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, Mo S, Li Y, Cushman M (2010) Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem 53:5033–5043

    Article  CAS  Google Scholar 

  30. Guo Y, Xu X, Qi W, Xie C, Wang G, Zhang A, Ge Y (2012) Synergistic antitumor interactions between gemcitabine and clofarabine in human pancreatic cancer cell lines. Mol Med Rep 5:734–738

    CAS  PubMed  Google Scholar 

  31. Bernhaus A, Ozsvar-Kozma M, Saiko P, Jaschke M, Lackner A, Grusch M, Horvath Z, Madlener S, Krupitza G, Handler N, Erker T, Jaeger W, Fritzer-Szekeres M, Szekeres T (2009) Antitumor effects of KITC, a new resveratrol derivative, in AsPC-1 and BxPC-3 human pancreatic carcinoma cells. Investig New Drugs 27:393–401

    Article  CAS  Google Scholar 

  32. Horvath Z, Murias M, Saiko P, Erker T, Handler N, Madlener S, Jaeger W, Grusch M, Fritzer-Szekeres M, Krupitza G, Szekeres T (2006) Cytotoxic and biochemical effects of 3,3′,4,4′,5,5′-hexahydroxystilbene, a novel resveratrol analog in HL-60 human promyelocytic leukemia cells. Exp Hematol 34:1377–1384

    Article  CAS  Google Scholar 

  33. Gandhi V, Estey E, Plunkett W (1994) Modulation of arabinosylcytosine metabolism during leukemia therapy. Adv Exp Med Biol 370:119–124

    Article  CAS  Google Scholar 

  34. Robinson BW, Im MM, Ljungman M, Praz F, Shewach DS (2003) Enhanced radiosensitization with gemcitabine in mismatch repair-deficient HCT116 cells. Cancer Res 63:6935–6941

    CAS  PubMed  Google Scholar 

  35. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nat Geosci 432:316–323

    CAS  Google Scholar 

  36. Chimploy K, Diaz GD, Li Q, Carter O, Dashwood WM, Mathews CK, Williams DE, Bailey GS, Dashwood RH (2009) E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer 125:2086–2094

    Article  CAS  Google Scholar 

  37. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  CAS  Google Scholar 

  38. Zhu KQ, Zhang SJ (2003) Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest. World J Gastroenterol 9:2073–2077

    Article  CAS  Google Scholar 

  39. Ray D, Kiyokawa H (2008) CDC25A phosphatase: a rate-limiting oncogene that determines genomic stability. Cancer Res 68:1251–1253

    Article  CAS  Google Scholar 

  40. Gao G, Peng M, Zhu L, Wei Y, Wu X (2009) Human papillomavirus 16 variant E7 gene induces transformation of NIH 3T3 cells via up-regulation of cdc25A and cyclin A. Int J Gynecol Cancer 19:494–499

    Article  Google Scholar 

  41. Madlener S, Rosner M, Krieger S, Giessrigl B, Gridling M, Vo TP, Leisser C, Lackner A, Raab I, Grusch M, Hengstschlager M, Dolznig H, Krupitza G (2009) Short 42 degrees C heat shock induces phosphorylation and degradation of Cdc25A which depends on p38MAPK, Chk2 and 14.3.3. Hum Mol Genet 18:1990–2000

    Article  CAS  Google Scholar 

  42. Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y (2003) Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cell Signal 15:719–727

    Article  CAS  Google Scholar 

  43. Lin KL, Su JC, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR (2010) Naphtho[1,2-b]furan-4,5-dione induces apoptosis and S-phase arrest of MDA-MB-231 cells through JNK and ERK signaling activation. Toxicol In Vitro 24:61–70

    Article  CAS  Google Scholar 

  44. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  Google Scholar 

  45. Cui J, Sun R, Yu Y, Gou S, Zhao G, Wang C (2010) Antiproliferative effect of resveratrol in pancreatic cancer cells. Phytother Res 24:1637–1644

    Article  CAS  Google Scholar 

  46. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  CAS  Google Scholar 

  47. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    Article  CAS  Google Scholar 

  48. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137

    Article  CAS  Google Scholar 

  49. Bozulic L, Hemmings BA (2009) PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol 21:256–261

    Article  CAS  Google Scholar 

  50. Bozulic L, Surucu B, Hynx D, Hemmings BA (2008) PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30:203–213

    Article  CAS  Google Scholar 

  51. Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ (2003) Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89:2110–2115

    Article  CAS  Google Scholar 

  52. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, Baird RD, Delgado L, Taylor A, Lupinacci L, Riisnaes R, Pope LL, Heaton SP, Thomas G, Garrett MD, Sullivan DM, de Bono JS, Tolcher AW (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29:4688–4695

    Article  CAS  Google Scholar 

  53. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9:1956–1967

    Article  CAS  Google Scholar 

  54. Fontecave M, Lepoivre M, Elleingand E, Gerez C, Guittet O (1998) Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett 421:277–279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Medical-Scientific Fund of the Mayor of Vienna, grant #09059 to M.F.-S., the “Hochschuljubilaeumsstiftung der Stadt Wien”, grants #H-756/2005 and #H-2498/2011 to T.S. and P.S., respectively, by the Fellinger Cancer Research Association (Fellinger Krebsforschung Gemeinnuetziger Verein) to G.K. as a mission-oriented grant, and by the Herzfelder Family foundation with grants to T.S., P.S., and G.K. The authors also wish to thank Toni Jaeger for preparing the western blotting figures.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szekeres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiko, P., Graser, G., Giessrigl, B. et al. Digalloylresveratrol, a novel resveratrol analog inhibits the growth of human pancreatic cancer cells. Invest New Drugs 31, 1115–1124 (2013). https://doi.org/10.1007/s10637-013-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-0009-x

Keywords

Navigation