Skip to main content
Log in

Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2–2.8 μmol/L for vorinostat and 5.1–17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose–response. Similar results were observed in colony formation assays where ≥24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

CTCL:

Cutaneous T-cell lymphoma

HDAC:

Histone deacetylase

HDACI:

Histone deacetylase inhibitor

HAT:

Histone acetyl transferase

IC:

Inhibitory concentration

PK:

Pharmacokinetic

PD:

Pharmacodynamic

TS:

Thymidylate synthase (protein)

References

  1. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  PubMed  CAS  Google Scholar 

  2. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671

    Article  PubMed  CAS  Google Scholar 

  3. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  PubMed  CAS  Google Scholar 

  4. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  PubMed  CAS  Google Scholar 

  5. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  PubMed  CAS  Google Scholar 

  6. Prystowsky MB, Adomako A, Smith RV, Kawachi N, McKimpson W, Atadja P et al. (2009) The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J Pathol

  7. Stevens FE, Beamish H, Warrener R, Gabrielli B (2008) Histone deacetylase inhibitors induce mitotic slippage. Oncogene 27:1345–1354

    Article  PubMed  CAS  Google Scholar 

  8. Ishii S, Kurasawa Y, Wong J, Yu-Lee LY (2008) Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc Natl Acad Sci U S A 105:4179–4184

    Article  PubMed  CAS  Google Scholar 

  9. Marquard L, Gjerdrum LM, Christensen IJ, Jensen PB, Sehested M, Ralfkiaer E (2008) Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology 53:267–277

    Article  PubMed  CAS  Google Scholar 

  10. Abbas A, Gupta S (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3:300–309

    Article  PubMed  Google Scholar 

  11. Suzuki J, Chen YY, Scott GK, Devries S, Chin K, Benz CC et al (2009) Protein acetylation and histone deacetylase expression associated with malignant breast cancer progression. Clin Cancer Res 15:3163–3171

    Article  PubMed  CAS  Google Scholar 

  12. Hanigan CL, Van Engeland M, De Bruine AP, Wouters KA, Weijenberg MP, Eshleman JR et al (2008) An inactivating mutation in HDAC2 leads to dysregulation of apoptosis mediated by APAF1. Gastroenterology 135(1654–1664):e2

    PubMed  Google Scholar 

  13. Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D et al (2008) HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19:4062–4075

    Article  PubMed  CAS  Google Scholar 

  14. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163

    Article  PubMed  CAS  Google Scholar 

  15. LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genom 2:67

    Article  Google Scholar 

  16. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  17. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  PubMed  CAS  Google Scholar 

  18. Portanova P, Russo T, Pellerito O, Calvaruso G, Giuliano M, Vento R et al (2008) The role of oxidative stress in apoptosis induced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid in human colon adenocarcinoma HT-29 cells. Int J Oncol 33:325–331

    PubMed  CAS  Google Scholar 

  19. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 95:3003–3007

    Article  PubMed  CAS  Google Scholar 

  20. Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    Article  PubMed  CAS  Google Scholar 

  21. Atadja P (2009) Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–241

    Article  PubMed  CAS  Google Scholar 

  22. American Cancer Society. Cancer Facts & Figures 2010. Atlanta: American Cancer Society. Vol. 2009. 2010

  23. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047

    Article  PubMed  CAS  Google Scholar 

  24. Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C et al (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18:136–147

    PubMed  CAS  Google Scholar 

  25. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  26. Fazzone W, Wilson PM, Labonte MJ, Lenz HJ, Ladner RD (2009) Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int J Cancer 125:463–473

    Article  PubMed  CAS  Google Scholar 

  27. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019

    Article  PubMed  CAS  Google Scholar 

  28. Fakih MG, Pendyala L, Egorin MJ, Fetterly G, Espinoza-Delgado I, Ross M et al (2009) A phase I clinical trial of vorinostat in combination with sFULV2 in patients with refractory solid tumors. ASCO Meet Abs 27:4083

    Google Scholar 

  29. Fakih MG, Pendyala L, Fetterly G, Toth K, Zwiebel JA, Espinoza-Delgado I et al (2009) A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res 15:3189–3195

    Article  PubMed  CAS  Google Scholar 

  30. Wilson PM, El-Khoueiry A, Iqbal S, Fazzone W, LaBonte MJ, Groshen S et al (2010) A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother Pharmacol 65:979–988

    Article  PubMed  CAS  Google Scholar 

  31. Gold PJ, Smith DA, Iriarte D, Boatman B, Kaplan HG (2012) Phase II trial of panobinostat (LBH589) in patients (pts) with refractory metastatic colorectal cancer (MCRC). ASCO Meet Abs 30:582

    Google Scholar 

  32. Fakih MG, Groman A, McMahon J, Wilding G, Muindi JR (2012) A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother Pharmacol 69:743–751

    Article  PubMed  CAS  Google Scholar 

  33. Fakih MG, Fetterly G, Egorin MJ, Muindi JR, Espinoza-Delgado I, Zwiebel JA et al (2010) A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin Cancer Res 16:3786–3794

    Article  PubMed  CAS  Google Scholar 

  34. Di Gennaro E, Bruzzese F, Pepe S, Leone A, Delrio P, Subbarayan PR et al (2009) Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biol Ther 8:782–791

    Article  PubMed  Google Scholar 

  35. Parise RA, Holleran JL, Beumer JH, Ramalingam S, Egorin MJ (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA), and its metabolites in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 840:108–115

    Article  PubMed  CAS  Google Scholar 

  36. Rathkopf D, Wong BY, Ross RW, Anand A, Tanaka E, Woo MM et al (2010) A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 66:181–189

    Article  PubMed  CAS  Google Scholar 

  37. Shapiro GI, Frank R, Dandamudi UB, Hengelage T, Zhao L, Gazi L et al (2012) The effect of food on the bioavailability of panobinostat, an orally active pan-histone deacetylase inhibitor, in patients with advanced cancer. Cancer Chemother Pharmacol 69:555–562

    Article  PubMed  CAS  Google Scholar 

  38. Shao W, Growney JD, Feng Y, O’Connor G, Pu M, Zhu W et al (2010) Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: defining molecular mechanisms of resistance. Int J Cancer 127:2199–2208

    Article  PubMed  CAS  Google Scholar 

  39. Erlich RB, Kherrouche Z, Rickwood D, Endo-Munoz L, Cameron S, Dahler A et al (2012) Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer 106:107–115

    Article  PubMed  CAS  Google Scholar 

  40. Lachenmayer A, Toffanin S, Cabellos L, Alsinet C, Hoshida Y, Villanueva A et al (2012) Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol 56:1343–1350

    Article  PubMed  CAS  Google Scholar 

  41. Lee SC, Cheong HJ, Kim SJ, Yoon J, Kim HJ, Kim KH et al (2011) Low-dose combinations of LBH589 and TRAIL can overcome TRAIL-resistance in colon cancer cell lines. Anticancer Res 31:3385–3394

    PubMed  CAS  Google Scholar 

  42. Basu HS, Mahlum A, Mehraein-Ghomi F, Kegel SJ, Guo S, Peters NR et al (2011) Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA). Cancer Chemother Pharmacol 67:705–715

    Article  PubMed  CAS  Google Scholar 

  43. Fiskus W, Hembruff SL, Rao R, Sharma P, Balusu R, Venkannagari S et al. (2012) Co-treatment with vorinostat synergistically enhances activity of Aurora kinase inhibitor against human breast cancer cells. Breast Cancer Res Treat

  44. Wilson PM, Fazzone W, LaBonte MJ, Lenz HJ, Ladner RD (2009) Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage. Nucleic Acids Res 37:78–95

    Article  PubMed  CAS  Google Scholar 

  45. Wilson PM, Fazzone W, LaBonte MJ, Deng J, Neamati N, Ladner RD (2008) Novel opportunities for thymidylate metabolism as a therapeutic target. Mol Cancer Ther 7:3029–3037

    Article  PubMed  CAS  Google Scholar 

  46. Ladner RD, McNulty DE, Carr SA, Roberts GD, Caradonna SJ (1996) Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J Biol Chem 271:7745–7751

    Article  PubMed  CAS  Google Scholar 

  47. Di Gennaro E, Piro G, Chianese MI, Franco R, Di Cintio A, Moccia T et al (2010) Vorinostat synergises with capecitabine through upregulation of thymidine phosphorylase. Br J Cancer 103:1680–1691

    Article  PubMed  Google Scholar 

  48. Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165

    Article  PubMed  Google Scholar 

  49. Novotny-Diermayr V, Sangthongpitag K, Hu CY, Wu X, Sausgruber N, Yeo P et al (2010) SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther 9:642–652

    Article  PubMed  CAS  Google Scholar 

  50. Razak AR, Hotte SJ, Siu LL, Chen EX, Hirte HW, Powers J et al (2011) Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours. Br J Cancer 104:756–762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by NCI CCSG (grant number 5 P30 CA014089) and the Robert E. Burns Memorial Foundation. The authors are grateful to Kathleen N. Beasley for her critical review of this manuscript.

Conflict of interest

All authors declare that they have no relevant conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Ladner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 25 kb)

ESM 2

(XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, P.M., LaBonte, M.J., Martin, S.C. et al. Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Invest New Drugs 31, 845–857 (2013). https://doi.org/10.1007/s10637-012-9914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9914-7

Keywords

Navigation