Investigational New Drugs

, Volume 31, Issue 4, pp 927–936 | Cite as

Phase Ib trial of the oral angiogenesis inhibitor pazopanib administered concurrently with pemetrexed in patients with advanced solid tumors

  • Jeffrey R. Infante
  • Silvia Novello
  • Wen Wee Ma
  • Grace K. Dy
  • Johanna C. Bendell
  • Anne Huff
  • Qiong Wang
  • A. Benjamin Suttle
  • Robert Allen
  • Chun-Fang Xu
  • Lone H. Ottesen
  • Howard A. BurrisIII
  • Alex A. Adjei


Introduction We sought to define the maximum tolerated dose (MTD) and evaluate the safety, pharmacokinetics, and preliminary clinical activity of pazopanib plus pemetrexed in patients with solid tumors. Methods This dose-escalation study used a standard 3 + 3 design to evaluate once daily pazopanib (400–800 mg) plus pemetrexed (400–500 mg/m2 on Day 1 of each 21-day cycle). Eight additional patients were enrolled into an expansion cohort. Results Twenty-five patients were enrolled. Pazopanib 800 mg plus pemetrexed 500 mg/m2 was the MTD. The most common adverse events at all dose levels included fatigue, neutropenia, diarrhea, and thrombocytopenia. The frequencies of non-hematologic adverse events were consistent with those of the individual agents. The rates of all-grade and Grade 4 hematologic toxicities (reversible neutropenia with median duration of 4 days) were higher with the combination regimen than with either monotherapy. Exploratory analyses revealed no association between the plasma levels of 3 biomarkers of vitamin B12 metabolism (cystathionine, homocysteine, and methylmalonic acid) and the risk of Grade 4 neutropenia and Grade 3 febrile neutropenia. Of 20 patients evaluated for efficacy, 2 (10 %) had a partial response. Pazopanib did not affect pemetrexed clearance, but increased pemetrexed maximal concentration by 22 %. In exploratory pharmacogenetic analyses, allelic variants of the VEGFA gene demonstrated weak correlation with development of severe neutropenia. Conclusions Concomitant administration of pazopanib 800 mg once daily plus pemetrexed 500 mg/m2 once every 21 days is feasible, albeit associated with a high frequency of brief, reversible neutropenia. Preliminary activity was observed in non-small-cell lung cancer.


Pazopanib Pemetrexed Non-small-cell lung carcinoma Maximum tolerated dose Combination therapy 



The study described in this manuscript was funded by GlaxoSmithKline Pharmaceuticals, Philadelphia, Pennsylvania. Funding for writing and editorial assistance was also provided by GlaxoSmithKline. The authors acknowledge Jane Saiers, PhD (The WriteMedicine, Inc.), for assistance with writing the manuscript, and Jerome F. Sah, PhD (ProEd Communications, Inc.), for medical editorial assistance.

Ethical standards

This study complied with the laws of the countries in which it was conducted (United States and Italy), and the study was approved by the respective institutional ethics committees.

Conflict of interest

H.A. Burris reports that his institution, Sarah Cannon Research Institute, received a grant for this study. J.R. Infante reports that his institution, Sarah Cannon Research Institute, received consulting honoraria, travel support, and other fees related to this study. A. Huff, Q. Wang, A.B. Suttle, C.F. Xu, and L.H. Ottesen are employees and stockholders of GlaxoSmithKline. S. Novello, W.W. Ma, G.K. Dy, J.C. Bendell, R. Allen, and A.A. Adjei report no potential conflicts of interest.


  1. 1.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144 PubMedCrossRefGoogle Scholar
  2. 2.
    Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221. doi: 10.1038/nrclinonc.2011.21 PubMedCrossRefGoogle Scholar
  3. 3.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  4. 4.
    Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D (2006) Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem 13:1845–1857PubMedCrossRefGoogle Scholar
  5. 5.
    Yuan A, Yu CJ, Kuo SH et al (2001) Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol 19:432–441PubMedGoogle Scholar
  6. 6.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380PubMedCrossRefGoogle Scholar
  7. 7.
    Socinski MA, Novello S, Brahmer JR et al (2008) Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer. J Clin Oncol 26:650–656. doi: 10.1200/JCO.2007.13.9303 PubMedCrossRefGoogle Scholar
  8. 8.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550. doi: 10.1056/NEJMoa061884 PubMedCrossRefGoogle Scholar
  9. 9.
    Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234. doi: 10.1200/JCO.2007.14.5466 PubMedCrossRefGoogle Scholar
  10. 10.
    Patel JD, Hensing TA, Rademaker A et al (2009) Phase II study of pemetrexed and carboplatin plus bevacizumab with maintenance pemetrexed and bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer. J Clin Oncol 27:3284–3289. doi: 10.1200/JCO.2008.20.8181 PubMedCrossRefGoogle Scholar
  11. 11.
    Hanna N, Shepherd FA, Fossella FV et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597. doi: 10.1200/JCO.2004.08.163 PubMedCrossRefGoogle Scholar
  12. 12.
    Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551. doi: 10.1200/JCO.2007.15.0375 PubMedCrossRefGoogle Scholar
  13. 13.
    Ciuleanu T, Brodowicz T, Zielinski C et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374:1432–1440. doi: 10.1016/S0140-6736(09)61497-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Adjei AA, Mandrekar SJ, Dy GK et al (2010) Phase II trial of pemetrexed plus bevacizumab for second-line therapy of patients with advanced non-small-cell lung cancer: NCCTG and SWOG study N0426. J Clin Oncol 28:614–619. doi: 10.1200/JCO.2009.23.6406 PubMedCrossRefGoogle Scholar
  15. 15.
    Patel JD, Bonomi P, Socinski MA et al (2009) Treatment rationale and study design for the pointbreak study: a randomized, open-label phase III study of pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab versus paclitaxel/carboplatin/bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. Clin Lung Cancer 10:252–256PubMedCrossRefGoogle Scholar
  16. 16.
    Ulahannan SV, Brahmer JR (2011) Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell lung cancer. Cancer Invest 29:325–337PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar R, Knick VB, Rudolph SK et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021. doi: 10.1158/1535-7163.MCT-07-0193 PubMedCrossRefGoogle Scholar
  18. 18.
    Votrient (pazopanib) prescribing information. GlaxoSmithKline: Research Triangle Park, NC. Revised April 2012. Accessed Oct 25, 2012
  19. 19.
    Altorki N, Lane ME, Bauer T et al (2010) Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J Clin Oncol 28:3131–3137PubMedCrossRefGoogle Scholar
  20. 20.
    Friedlander M, Hancock KC, Rischin D et al (2010) A Phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecol Oncol 119:32–37PubMedCrossRefGoogle Scholar
  21. 21.
    Monk BJ, Mas Lopez L, Zarba JJ et al (2010) Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J Clin Oncol 28:3562–3569PubMedCrossRefGoogle Scholar
  22. 22.
    Niyikiza C, Baker SD, Seitz DE et al (2002) Homocysteine and methylmalonic acid: markers to predict and avoid toxicity from pemetrexed therapy. Mol Cancer Ther 1:545–552PubMedCrossRefGoogle Scholar
  23. 23.
    Savage DG, Lindenbaum J, Stabler SP, Allen RH (1994) Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 96:239–246PubMedCrossRefGoogle Scholar
  24. 24.
    Stabler SP, Lindenbaum J, Savage DG, Allen RH (1993) Elevation of serum cystathionine levels in patients with cobalamin and folate deficiency. Blood 81:3404–3413PubMedGoogle Scholar
  25. 25.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  26. 26.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989PubMedCrossRefGoogle Scholar
  27. 27.
    LaPlant KD, Louzon PD (2010) Pazopanib: an oral multitargeted tyrosine kinase inhibitor for use in renal cell carcinoma. Ann Pharmacother 44:1054–1060PubMedCrossRefGoogle Scholar
  28. 28.
    Fuld AD, Dragnev KH, Rigas JR (2010) Pemetrexed in advanced non-small-cell lung cancer. Expert Opin Pharmacother 11:1387–1402PubMedCrossRefGoogle Scholar
  29. 29.
    Alimta (pemetrexed) prescribing information. Eli Lilly and Company: Indianapolis, IN. Revised November 2011. Accessed March 19, 2012
  30. 30.
    Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jeffrey R. Infante
    • 1
  • Silvia Novello
    • 2
  • Wen Wee Ma
    • 3
  • Grace K. Dy
    • 3
  • Johanna C. Bendell
    • 1
  • Anne Huff
    • 4
  • Qiong Wang
    • 4
  • A. Benjamin Suttle
    • 5
  • Robert Allen
    • 6
  • Chun-Fang Xu
    • 7
  • Lone H. Ottesen
    • 7
  • Howard A. BurrisIII
    • 1
  • Alex A. Adjei
    • 8
  1. 1.Sarah Cannon Research InstituteNashvilleUSA
  2. 2.Department of Clinical & Biological SciencesUniversity of TurinOrbassanoItaly
  3. 3.Roswell Park Cancer InstituteBuffaloUSA
  4. 4.GlaxoSmithKlineCollegevilleUSA
  5. 5.GlaxoSmithKlineResearch Triangle ParkUSA
  6. 6.University of Colorado DenverAuroraUSA
  7. 7.GlaxoSmithKlineUxbridgeUK
  8. 8.Department of MedicineRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations