Advertisement

Investigational New Drugs

, Volume 31, Issue 3, pp 535–544 | Cite as

The novel antiangiogenic VJ115 inhibits the NADH oxidase ENOX1 and cytoskeleton-remodeling proteins

  • Amudhan Venkateswaran
  • David B. Friedman
  • Alexandra J. Walsh
  • Melissa C. Skala
  • Soumya Sasi
  • Girish Rachakonda
  • Peter A. Crooks
  • Michael L. Freeman
  • Konjeti R. Sekhar
PRECLINICAL STUDIES

Summary

Targeting tumor vasculature represents a rational strategy for controlling cancer. (Z)-(+/−)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (denoted VJ115) is a novel chemical entity that inhibits the enzyme ENOX1, a NADH oxidase. Genetic and small molecule inhibition of ENOX1 inhibits endothelial cell tubule formation and tumor-mediated neo-angiogenesis. Inhibition of ENOX1 radiosensitizes tumor vasculature, a consequence of enhanced apoptosis. However, the molecular mechanisms underlying these observations are not well understood. Herein, we mechanistically link ENOX1-mediated regulation of cellular NADH concentrations with proteomics profiling of endothelial cell protein expression following exposure to VJ115. Pathway Studios network analysis of potential effector molecules identified by the proteomics profiling indicated that a VJ115 exposure capable of altering intracellular NADH concentrations impacted proteins involved in cytoskeletal reorganization. The analysis was validated using RT-PCR and immunoblotting of selected proteins. RNAi knockdown of ENOX1 was shown to suppress expression of stathmin and lamin A/C, proteins identified by the proteomics analysis to be suppressed upon VJ115 exposure. These data support the hypothesis that VJ115 inhibition of ENOX1 can impact expression of proteins involved in cytoskeletal reorganization and support a hypothesis in which ENOX1 activity links elevated cellular NADH concentrations with cytoskeletal reorganization and angiogenesis.

Keywords

ENOX1 Angiogenesis Proteomics 2D-DIGE NADH 

Notes

Acknowledgements

Supported in part by grants from U.S. National Institutes of Health/National Cancer Institute grants RO1CA140409, T32CA093240, Vanderbilt-Ingram Cancer Center grant P30 CA68485, and the Vanderbilt Academic Venture Capital fund for proteomics. We are thankful to Drs. V.J. Sonar and Y.T.R. Reddy for the synthesis of VJ115.

Conflict of interest statement

The authors declare that they have no conflict of interest

Supplementary material

10637_2012_9884_MOESM1_ESM.doc (86 kb)
Supplemental Fig. 1 The relative change in protein expression over time for 20 polypeptides from 2D-DIGE study whose abundance changed by 20 % or more (p < 0.05) after VJ115 treatment. (DOC 86 kb)
10637_2012_9884_MOESM2_ESM.doc (70 kb)
Supplemental Fig. 2 A) Western blot analysis was employed to confirm the down-regulation of phosphor-c-Jun expression. B) Immunoblot of phosphorylation status of p70S6K and its down-stream target, ribosomal protein S6 in HUVECs exposed to VJ115. (DOC 70 kb)

References

  1. 1.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  2. 2.
    Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121PubMedCrossRefGoogle Scholar
  3. 3.
    Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72:1909–1914PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang Z, Gorenstein NM, Morre DM, Morre DJ (2008) Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 47:14028–14038PubMedCrossRefGoogle Scholar
  5. 5.
    Geng L, Rachakonda G, Morre DJ, Morre DM, Crooks PA, Sonar VN et al (2009) Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature. FASEB J 23:2986–2995PubMedCrossRefGoogle Scholar
  6. 6.
    Venkateswaran A SK, Melville DB, Levic DS, Rybski WM, Walsh AJ, Skala MC, Crooks PA, Freeman ML, Knapik EW. The NADH oxidase Enox1 is required for vasculogenesis in Zebrafish. In Preparation.Google Scholar
  7. 7.
    Miyashita H, Kanemura M, Yamazaki T, Abe M, Sato Y (2004) Vascular endothelial zinc finger 1 is involved in the regulation of angiogenesis: possible contribution of stathmin/OP18 as a downstream target gene. Arterioscler Thromb Vasc Biol 24:878–884PubMedCrossRefGoogle Scholar
  8. 8.
    Lee JS, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y et al (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93:2542–2552PubMedCrossRefGoogle Scholar
  9. 9.
    Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–19499PubMedCrossRefGoogle Scholar
  10. 10.
    Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44PubMedCrossRefGoogle Scholar
  11. 11.
    Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang B, Chambers MC, Tabb DL (2007) Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J Proteome Res 6:3549–3557PubMedCrossRefGoogle Scholar
  13. 13.
    Klaidman LK, Leung AC, Adams JD Jr (1995) High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal Biochem 228:312–317PubMedCrossRefGoogle Scholar
  14. 14.
    Avi-Dor Y, Olson JM, Doherty MD, Kaplan NO (1962) Fluorescence of pyridine nucleotides in mitochondria. J Biol Chem 237:2377–2383Google Scholar
  15. 15.
    Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH et al (2010) Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med 2:43ra55PubMedCrossRefGoogle Scholar
  16. 16.
    Chen HX (2004) Expanding the clinical development of bevacizumab. Oncologist 9(Suppl 1):27–35PubMedCrossRefGoogle Scholar
  17. 17.
    Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44PubMedGoogle Scholar
  18. 18.
    Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9:1957–1971PubMedGoogle Scholar
  19. 19.
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147PubMedCrossRefGoogle Scholar
  20. 20.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  21. 21.
    Yoon SS, Duda DG, Karl DL, Kim TM, Kambadakone AR, Chen YL et al (2011) Phase II study of neoadjuvant bevacizumab and radiotherapy for resectable soft tissue sarcomas. Int J Radiat Oncol Biol Phys 81:1081–1090PubMedCrossRefGoogle Scholar
  22. 22.
    Amodio G, Moltedo O, Monteleone F, D’Ambrosio C, Scaloni A, Remondelli P et al (2010) Proteomic signatures in thapsigargin-treated hepatoma cells. Chem Res Toxicol 24:1215–1222CrossRefGoogle Scholar
  23. 23.
    Kellokumpu S, Sormunen R, Heikkinen J, Myllyla R (1994) Lysyl hydroxylase, a collagen processing enzyme, exemplifies a novel class of luminally-oriented peripheral membrane proteins in the endoplasmic reticulum. J Biol Chem 269:30524–30529PubMedGoogle Scholar
  24. 24.
    Rahajeng J, Giridharan SS, Naslavsky N, Caplan S (2010) Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 285:31918–31922PubMedCrossRefGoogle Scholar
  25. 25.
    Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29:311–25.Google Scholar
  26. 26.
    Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM et al (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119:1763–1771PubMedCrossRefGoogle Scholar
  27. 27.
    Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256PubMedCrossRefGoogle Scholar
  28. 28.
    Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31PubMedCrossRefGoogle Scholar
  29. 29.
    Emerson LJ, Holt MR, Wheeler MA, Wehnert M, Parsons M, Ellis JA (2009) Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations. Biochim Biophys Acta 1792:810–821PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshie M, Miyajima E, Kyo S, Tamura K (2009) Stathmin, a microtubule regulatory protein, is associated with hypoxia-inducible factor-1alpha levels in human endometrial and endothelial cells. Endocrinology 150:2413–2418PubMedCrossRefGoogle Scholar
  31. 31.
    Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620PubMedCrossRefGoogle Scholar
  32. 32.
    Dai S, Jia Y, Wu SL, Isenberg JS, Ridnour LA, Bandle RW et al (2008) Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin. J Proteome Res 7:4384–4395PubMedCrossRefGoogle Scholar
  33. 33.
    Keezer SM, Ivie SE, Krutzsch HC, Tandle A, Libutti SK, Roberts DD (2003) Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Res 63:6405–6412PubMedGoogle Scholar
  34. 34.
    Muriel O, Echarri A, Hellriegel C, Pavon DM, Beccari L, Del Pozo MA (2011) Phosphorylated filamin A regulates actin-linked caveolae dynamics. J Cell Sci 124:2763–76.Google Scholar
  35. 35.
    De Luca T, Morre DM, Morre DJ (2010) Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem 110:1504–1511PubMedCrossRefGoogle Scholar
  36. 36.
    Su Y, Rosenthal D, Smulson M, Spiegel S (1994) Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem 269:16512–16517PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Amudhan Venkateswaran
    • 1
  • David B. Friedman
    • 2
    • 3
  • Alexandra J. Walsh
    • 4
  • Melissa C. Skala
    • 4
  • Soumya Sasi
    • 1
  • Girish Rachakonda
    • 1
  • Peter A. Crooks
    • 5
  • Michael L. Freeman
    • 1
  • Konjeti R. Sekhar
    • 1
  1. 1.Department of Radiation OncologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of BiochemistryVanderbilt UniversityNashvilleUSA
  3. 3.Proteomics LaboratoryVanderbilt UniversityNashvilleUSA
  4. 4.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  5. 5.Department of Pharmaceutical SciencesCollege of Pharmacy, University of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations