Investigational New Drugs

, Volume 31, Issue 2, pp 285–292 | Cite as

Efficacy of substituted 9-aminoacridine derivatives in small cell lung cancer

  • Etchison Ryan
  • A. Jacobson Blake
  • A. Benoit
  • M. Ferguson David
  • A. Kratzke RobertEmail author


Topoisomerase II (TopoII) plays a critical role in the processes of replication, transcription, and decantenation in the cell and is an important chemotherapeutic target in the treatment of small cell lung cancer (SCLC). Current treatment strategies for SCLC employ the use of topoII poisons which stabilize the topoII-DNA transient covalent complex, inducing double stranded DNA damage and cellular death via apoptosis in cancer cells. Despite their effectiveness the topoII poisons are known to induce secondary malignancies in a small population of patients, stimulating the search for new compounds with less toxicity. Recently a small library of substituted 9-aminoacridine derivatives was discovered that displayed topoII catalytic inhibitory properties. In this work we assess their ability to inhibit proliferation and induce cellular death in SCLC. The results indicate effective inhibition of cellular proliferation at EC(50) values in the low μM range. Western blot analysis of p62/LC3 levels, the AKT/mTOR pathway, and the ERK1/2 pathway indicate that autophagy is occurring as the primary mechanism of cell death; furthermore, the Guava Nexin and caspase 3/7 activation assays indicate that apoptosis does not occur. While it is unlikely that the active concentration of these compounds could be achieved in vivo, they show great promise for the use and effectiveness of acridine derivatives in the treatment of SCLC in the future.


Topoisomerase II 9-aminoacridine derivative Catalytic inhibitor Small cell lung cancer 



The authors would like to thank Manish Patel for helpful advice and editing. The authors have no conflict of interest with the results or products featured in this manuscript.


  1. 1.
    Gazdar AF, Bunn PA Jr, Minna JD, Baylin SB (1985) Origin of human small cell lung cancer. Science 229(4714):679–680 [cited2012Feb2]PubMedCrossRefGoogle Scholar
  2. 2.
    Oberg K, Hellman P, Kwekkeboom D, Jelic S (2010) Neuroendocrine bronchial and thymic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(5):220–222 [cited2012Feb2]CrossRefGoogle Scholar
  3. 3.
    Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61(4):212–236 [cited2012Jan30]PubMedCrossRefGoogle Scholar
  4. 4.
    Spira A, Ettinger DS (2004) Multidisciplinary management of lung cancer. N Engl J Med 350(4):379–392 [cited2012Feb2]PubMedCrossRefGoogle Scholar
  5. 5.
    Schneider BJ (2008) Management of recurrent small cell lung cancer. J Natl Compr Canc Netw 6(3):323–331 [cited2012Feb2]PubMedGoogle Scholar
  6. 6.
    Govindan R, Page N, Morgensztern D et al (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24(28):4539–4544 [cited2012Feb2]PubMedCrossRefGoogle Scholar
  7. 7.
    Graille M, Cladière L, Durand D et al (2008) Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms. Structure 16(3):360–370 [cited2011Mar6]PubMedCrossRefGoogle Scholar
  8. 8.
    Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440 [cited2011Feb16]PubMedCrossRefGoogle Scholar
  9. 9.
    Walker JV, Nitiss JL (2002) DNA topoisomerase II as a target for cancer chemotherapy. Cancer Invest 20(4):570–589 [cited2011Feb9]PubMedCrossRefGoogle Scholar
  10. 10.
    Drake FH, Hofmann GA, Bartus HF, Mattern MR, Crooke ST, Mirabelli CK (1989) Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28(20):8154–8160 [cited2012Jan26]PubMedCrossRefGoogle Scholar
  11. 11.
    Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol. 1994;34191–218.[cited2012Jan26]Google Scholar
  12. 12.
    Chene P, Rudloff J, Schoepfer J et al (2009) Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem Biol 9(1):1 [cited2011Feb21]PubMedCrossRefGoogle Scholar
  13. 13.
    Kaufmann SH (1998) Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim Biophys Acta 1400(1–3):195–211 [cited2011Apr6]PubMedGoogle Scholar
  14. 14.
    Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433 [cited2011Mar6]PubMedCrossRefGoogle Scholar
  15. 15.
    Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37(3):738PubMedCrossRefGoogle Scholar
  16. 16.
    Wilstermann AM, Osheroff N (2003) Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Current Topics in Medicinal Chemistry 3(3):321–338PubMedCrossRefGoogle Scholar
  17. 17.
    McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res Fundam Mol Mech Mutagen 623(1–2):83–97CrossRefGoogle Scholar
  18. 18.
    Azarova AM, Lyu YL, Lin CP et al (2007) Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci 104(26):11014PubMedCrossRefGoogle Scholar
  19. 19.
    Degrassi F, Fiore M, Palitti F (2004) Chromosomal aberrations and genomic instability induced by topoisomerase-targeted antitumour drugs. Curr Med Chem Anticancer Agents 4(4):317–325 [cited2011Feb9]PubMedCrossRefGoogle Scholar
  20. 20.
    Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99(2):167–181PubMedCrossRefGoogle Scholar
  21. 21.
    Goodell JR, Ougolkov AV, Hiasa H et al (2008) Acridine-Based Agents with Topoisomerase II Activity Inhibit Pancreatic Cancer Cell Proliferation and Induce Apoptosis. J Med Chem 51(2):179–182PubMedCrossRefGoogle Scholar
  22. 22.
    Oppegard LM, Ougolkov AV, Luchini DN et al (2009) Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. Eur J Pharmacol 602(2–3):223–229 [cited2011Feb7]PubMedCrossRefGoogle Scholar
  23. 23.
    Akimitsu N, Kamura K, Toné S et al (2003) Induction of apoptosis by depletion of DNA topoisomerase II [alpha] in mammalian cells. Biochem Biophys Res Commun 307(2):301–307PubMedCrossRefGoogle Scholar
  24. 24.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873 [cited2011Apr17]PubMedCrossRefGoogle Scholar
  25. 25.
    Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137(6):1001–1004 [cited2012Mar1]PubMedCrossRefGoogle Scholar
  26. 26.
    Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72(1):29–39 [cited2012Jan26]PubMedCrossRefGoogle Scholar
  27. 27.
    Newman RA, Kondo Y, Yokoyama T et al (2007) Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr Cancer Ther 6(4):354–364 [cited2012Jan26]PubMedCrossRefGoogle Scholar
  28. 28.
    Guo C, Gasparian AV, Zhuang Z et al (2009) 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways. Oncogene 28(8):1151–1161 [cited2011Mar6]PubMedCrossRefGoogle Scholar
  29. 29.
    Denny WA (2002) Acridine derivatives as chemotherapeutic agents. Curr Med Chem 9(18):1655–1665 [cited2011Feb16]PubMedCrossRefGoogle Scholar
  30. 30.
    René B, Fossé P, Khélifa T, Jacquemin-Sablon A, Bailly C (1997) Cytotoxicity and interaction of amsacrine derivatives with topoisomerase II: role of the 1′ substitute on the aniline nucleus. Bull Cancer 84(10):941–948 [cited2011Apr6]PubMedGoogle Scholar
  31. 31.
    Goodell JR, Madhok AA, Hiasa H, Ferguson DM (2006) Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg Med Chem 14(16):5467–5480 [cited2011Feb9]PubMedCrossRefGoogle Scholar
  32. 32.
    Adams A (2002) Crystal structures of acridines complexed with nucleic acids. Curr Med Chem 9(18):1667–1675 [cited2012Mar6]PubMedCrossRefGoogle Scholar
  33. 33.
    Wilstermann AM, Bender RP, Godfrey M et al (2007) Topoisomerase II - drug interaction domains: identification of substituents on etoposide that interact with the enzyme. Biochemistry 46(28):8217–8225 [cited2012Mar6]PubMedCrossRefGoogle Scholar
  34. 34.
    Osheroff N (1989) Effect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposide. Biochemistry 28(15):6157–6160 [cited2012Mar6]PubMedCrossRefGoogle Scholar
  35. 35.
    Wilstermann AM, Osheroff N (2001) Positioning the 3′-DNA terminus for topoisomerase II-mediated religation. J Biol Chem 276(21):17727–17731 [cited2012Mar6]PubMedCrossRefGoogle Scholar
  36. 36.
    Smith MA, Rubinstein L, Anderson JR et al (1999) Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J Clin Oncol 17(2):569–577 [cited2012Mar6]PubMedGoogle Scholar
  37. 37.
    Oizumi S, Isobe H, Ogura S et al (2002) Topoisomerase inhibitor-induced apoptosis accompanied by down-regulation of Bcl-2 in human lung cancer cells. Anticancer Res 22(6C):4029–4037 [cited2011Feb9]PubMedGoogle Scholar
  38. 38.
    Khélifa T, Beck WT (1999) Merbarone, a catalytic inhibitor of DNA topoisomerase II, induces apoptosis in CEM cells through activation of ICE/CED-3-like protease. Mol Pharmacol 55(3):548PubMedGoogle Scholar
  39. 39.
    Dartsch DC, Schaefer A, Boldt S, Kolch W, Marquardt H (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7(6):537–548 [cited2012Mar6]PubMedCrossRefGoogle Scholar
  40. 40.
    Raza A, Jacobson BA, Benoit A, et al. Novel acridine-based agents with topoisomerase II inhibitor activity suppress mesothelioma cell proliferation and induce apoptosis[Internet]. Investigational New Drugs. 2011;[cited2011Dec19]Available from:
  41. 41.
    Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075 [cited2012Mar1]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Etchison Ryan
    • 1
  • A. Jacobson Blake
    • 1
  • A. Benoit
    • 1
  • M. Ferguson David
    • 1
  • A. Kratzke Robert
    • 1
    Email author
  1. 1.Unviersity of Minnesota Medical School, Division of HematologyOncology and Transplantation, University of MinnesotaMinneapolisUSA

Personalised recommendations