Investigational New Drugs

, Volume 30, Issue 6, pp 2252–2262 | Cite as

Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling

  • Alfeu Zanotto-Filho
  • Elizandra Braganhol
  • Ana Maria Oliveira Battastini
  • José Cláudio Fonseca Moreira


Proteasome inhibitors are emerging as a new class of anticancer agents. In this work, we examined the mechanisms underlying cytotoxicity, selectivity and adjuvant potential of the proteasome inhibitor MG132 in a panel of glioblastoma (GBM) cells (U138MG, C6, U87 and U373) and in normal astrocytes. MG132 markedly inhibited GBM cells growth irrespective of the p53 or PTEN mutational status of the cells whereas astrocytic viability was not affected, suggesting a selective toxicity of MG132 to cancerous glial cells. Mechanistically, MG132 arrested cells in G2/M phase of the cell cycle and increased p21WAF1 protein immunocontent. Following cell arrest, cells become apoptotic as shown by annexin-V binding, caspase-3 activation, chromatin condensation and formation of sub-G1 apoptotic cells. MG132 promoted mitochondrial depolarization and decreased the mitochondrial antiapoptotic protein bcl-xL; it also induced activation of JNK and p38, and inhibition of NFkappaB and PI3K/Akt survival pathways. Pre-treatment of GBMs with the mitochondrial permeability transition pore inhibitor, bongkrekic acid, or pharmacological inhibitors of JNK1/2 and p38, SP600125 and SB203580, attenuated MG132-induced cell death. Besides its apoptotic effect alone, MG132 also enhanced the antiglioma effect of the chemotherapeutics cisplatin, taxol and doxorubicin in C6 and U138MG cells, indicating an adjuvant/chemosensitizer potential. In summary, MG132 exerted profound and selective toxicity in GBMs, being a potential agent for further testing in animal models of the disease.


MG132 Glioblastoma Apoptosis Chemotherapy 



We acknowledge the Brazilian funds CAPES, CNPq, and FINEP/IBNNet (01060842–00) for financial support. We thank Dr. Rafael Roesler (HCPA, Porto Alegre, Brazil) for gently provided U87 and U373 cell lines.

Conflict of interest statement

The authors declare that there are no conflicts of interest.


  1. 1.
    Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622PubMedGoogle Scholar
  2. 2.
    Baiz D, Pozzato G, Dapas B, Farra R, Scaggiante B, Grassi M, Uxa L, Giansante C, Zennaro C, Guarnieri G, Grassi G (2009) Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie 91:373–382. doi: 10.1016/j.biochi.2008.10.015 PubMedCrossRefGoogle Scholar
  3. 3.
    Braganhol E, Zamin LL, Cañedo AD, Horn F, Tamajusuku AS, Wink MR, Salbego C, Battastini AM (2006) Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 17:663–671. doi: 10.1097/01.cad.0000215063.23932.02 PubMedCrossRefGoogle Scholar
  4. 4.
    Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, Vogel H, Recht LD, Scheck AC, Sikic BI (2006) Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol 24:274–287. doi: 10.1200/JCO.2005.02.9405 PubMedCrossRefGoogle Scholar
  5. 5.
    Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752. doi: 10.1371/journal.pone.0007752 PubMedCrossRefGoogle Scholar
  6. 6.
    Brown RE, Law A (2006) Morphoproteomic demonstration of constitutive nuclear factor-kappaB activation in glioblastoma multiforme with genomic correlates and therapeutic implications. Ann Clin Lab Sci 36:421–426PubMedGoogle Scholar
  7. 7.
    Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G (2006) The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 21:69–80PubMedGoogle Scholar
  8. 8.
    Chari A, Mazumder A, Jagannath S (2010) Proteasome inhibition and its therapeutic potential in multiple myeloma. Biologics 4:273–287. doi: 10.2147/BTT.S3419 PubMedGoogle Scholar
  9. 9.
    da Frota ML, Braganhol E, Canedo AD, Klamt F, Apel MA, Mothes B, Lerner C, Battastini AM, Henriques AT, Moreira JC (2009) Brazilian marine sponge Polymastia janeirensis induces apoptotic cell death in human U138MG glioma cell line, but not in a normal cell culture. Invest New Drugs 27:13–20. doi: 10.1007/s10637-008-9134-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Dhandapani KM, Mahesh VB, Brann DWJ (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 102:522–538. doi: 10.1111/j.1471-4159.2007.04633.x PubMedCrossRefGoogle Scholar
  11. 11.
    Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, Brancolini C (2009) Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 8:3140–3150. doi: 10.1158/1535-7163.MCT-09-0431 PubMedCrossRefGoogle Scholar
  12. 12.
    Frankel A, Man S, Elliott P, Adams J, Kerbel RS (2000) Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 6:3719–3728PubMedGoogle Scholar
  13. 13.
    Jiang Z, Zheng X, Rich KM (2003) Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem 84:273–281. doi: 10.1046/j.1471-4159.2003.01522.x PubMedCrossRefGoogle Scholar
  14. 14.
    Kasuga C, Ebata T, Kayagaki N, Yagita H, Hishii M, Arai H, Sato K, Okumura K (2004) Sensitization of human glioblastomas to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by NF-kappaB inhibitors. Cancer Sci 95:840–844. doi: 10.1111/j.1349-7006.2004.tb02191.x PubMedCrossRefGoogle Scholar
  15. 15.
    Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S (1999) Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 443:181–186. doi: 10.1016/S0014-5793(98)01709-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Klamt F, Shacter E (2005) Taurine chloramine, an oxidant derived from neutrophils, induces apoptosis in human B lymphoma cells through mitochondrial damage. J Biol Chem 280:21346–21352. doi: 10.1074/jbc.M501170200 PubMedCrossRefGoogle Scholar
  17. 17.
    Ko BS, Chang TC, Chen CH, Liu CC, Kuo CC, Hsu C, Shen YC, Shen TL, Golubovskaya VM, Chang CC, Shyue SK, Liou JY (2010) Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci 86:199–206. doi: 10.1016/j.lfs.2009.12.003 PubMedCrossRefGoogle Scholar
  18. 18.
    Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, Krupp W, Bauer M, Ahnert P, Meixensberger J, Walczak H (2007) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13:3403–3412. doi: 10.1158/1078-0432.CCR-07-0251 PubMedCrossRefGoogle Scholar
  19. 19.
    La Ferla-Brühl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, Fulda S (2007) NF-kappaB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene 26:571–582. doi: 10.1038/sj.onc.1209841 PubMedCrossRefGoogle Scholar
  20. 20.
    Lauricella M, Emanuele S, D’Anneo A, Calvaruso G, Vassallo B, Carlisi D, Portanova P, Vento R, Tesoriere G (2006) JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis 11:607–625. doi: 10.1007/s10495-006-4689-y PubMedCrossRefGoogle Scholar
  21. 21.
    Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J, Muggia FM, Perez-Soler R (2003) Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 9:1145–1154PubMedGoogle Scholar
  22. 22.
    Lu G, Punj V, Chaudhary PM (2008) Proteasome inhibitor Bortezomib induces cell cycle arrest and apoptosis in cell lines derived from Ewing’s sarcoma family of tumors and synergizes with TRAIL. Cancer Biol Ther 7: 603–608. doi: 10.4161/cbt.7.4.5564
  23. 23.
    Mercer RW, Tyler MA, Ulasov IV, Lesniak MS (2009) Targeted therapies for malignant glioma: progress and potential. BioDrugs 23:25–35. doi: 10.2165/00063030-200923010-00003 PubMedCrossRefGoogle Scholar
  24. 24.
    Monticone M, Biollo E, Fabiano A, Fabbi M, Daga A, Romeo F, Maffei M, Melotti A, Giaretti W, Corte G, Castagnola P (2009) z-Leucinyl-leucinyl-norleucinal induces apoptosis of human glioblastoma tumor-initiating cells by proteasome inhibition and mitotic arrest response. Mol Cancer Res 7:1822–1834. doi: 10.1158/1541-7786.MCR-09-0225 PubMedCrossRefGoogle Scholar
  25. 25.
    Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ (1998) Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 95:5724–5729PubMedCrossRefGoogle Scholar
  26. 26.
    Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309. doi: 10.1038/nrc1588 PubMedCrossRefGoogle Scholar
  27. 27.
    Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68:6271–6280. doi: 10.1158/0008-5472.CAN-07-6769 PubMedCrossRefGoogle Scholar
  28. 28.
    Phuphanich S, Supko JG, Carson KA, Grossman SA, Burt Nabors L, Mikkelsen T, Lesser G, Rosenfeld S, Desideri S, Olson JJ (2010) Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neurooncol 100:95–103. doi: 10.1007/s11060-010-0143-7 PubMedCrossRefGoogle Scholar
  29. 29.
    Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ (2010) A survey of glioblastoma genomic amplifications and deletions. J Neurooncol 96:169–179. doi: 10.1007/s11060-009-9959-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor kappaB in glioblastoma multiforme drives invasive phenotype. J Neurooncol 85:39–47. doi: 10.1007/s11060-007-9390-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H, Khac MT, Jolois O, Erkmen K, Merville MP, Black PM, Bours V (2004) In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 10:5595–5603. doi: 10.1158/1078-0432.CCR-03-0392 PubMedCrossRefGoogle Scholar
  32. 32.
    Roesler R, Brunetto AT, Abujamra AL, de Farias CB, Brunetto AL, Schwartsmann G (2010) Current and emerging molecular targets in glioma. Expert Rev Anticancer Ther 10:1735–1751. doi: 10.1586/era.10.167 PubMedCrossRefGoogle Scholar
  33. 33.
    Roth P, Kissel M, Herrmann C, Eisele G, Leban J, Weller M, Schmidt F (2009) SC68896, a novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res 15:6609–6618. doi: 10.1158/1078-0432.CCR-09-0548 PubMedCrossRefGoogle Scholar
  34. 34.
    Russo A, Bronte G, Fulfaro F, Cicero G, Adamo V, Gebbia N, Rizzo S (2010) Bortezomib: a new pro-apoptotic agent in cancer treatment. Curr Cancer Drug Targets 10:55–67PubMedCrossRefGoogle Scholar
  35. 35.
    Soni D, King JA, Kaye AH, Hovens CM (2005) Genetics of glioblastoma multiforme: mitogenic signaling and cell cycle pathways converge. J Clin Neurosci 12:1–5. doi: 10.1016/j.jocn.2004.04.001 PubMedCrossRefGoogle Scholar
  36. 36.
    Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018. doi: 10.1016/S0140-6736(02)08091-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 76:1246–1255. doi: 10.1124/mol.109.058024 PubMedCrossRefGoogle Scholar
  38. 38.
    Vaziri SA, Hill J, Chikamori K, Grabowski DR, Takigawa N, Chawla-Sarkar M, Rybicki LR, Gudkov AV, Mekhail T, Bukowski RM, Ganapathi MK, Ganapathi R (2005) Sensitization of DNA damage-induced apoptosis by the proteasome inhibitor PS-341 is p53 dependent and involves target proteins 14-3-3-sigma and survivin. Mol Cancer Ther 4:1880–1890. doi: 10.1158/1535-7163.MCT-05-0222 PubMedCrossRefGoogle Scholar
  39. 39.
    Wagenknecht B, Hermisson M, Eitel K, Weller M (1999) Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 9:117–125. doi: 10.1159/000016308 PubMedCrossRefGoogle Scholar
  40. 40.
    Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M (2000) Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 75:2288–2297. doi: 10.1046/j.1471-4159.2000.0752288.x PubMedCrossRefGoogle Scholar
  41. 41.
    Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951. doi: 10.1038/labinvest.3700123 PubMedCrossRefGoogle Scholar
  42. 42.
    Weaver KD, Yeyeodu S, Cusack JC, Baldwin AS, Ewend MG (2003) Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol 61:187–196. doi: 10.1023/A:1022554824129 PubMedCrossRefGoogle Scholar
  43. 43.
    Yang Y, Shao N, Luo G, Li L, Zheng L, Nilsson-Ehle P, Xu N (2010) Mutations of PTEN gene in gliomas correlate to tumor differentiation and short-term survival rate. Anticancer Res 30:981–985PubMedGoogle Scholar
  44. 44.
    Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354. doi: 10.1038/sj.onc.1208225 PubMedCrossRefGoogle Scholar
  45. 45.
    Zanotto-Filho A, Delgado-Cañedo A, Schröder R, Becker M, Klamt F, Moreira JC (2010) The pharmacological NFkappaB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation. Cancer Lett 288:192–203. doi: 10.1016/j.canlet.2009.06.038 PubMedCrossRefGoogle Scholar
  46. 46.
    Zanotto-Filho A, Gelain DP, Schröder R, Souza LF, Pasquali MA, Klamt F, Moreira JCF (2009) The NFkappaB-mediated control of RS and JNK signaling in vitamin A-treated cells: duration of JNK-AP-1 pathway activation may determine cell death or proliferation. Biochem Pharmacol 77:1291–1301. doi: 10.1016/j.bcp.2008.12.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alfeu Zanotto-Filho
    • 1
    • 4
  • Elizandra Braganhol
    • 2
    • 3
  • Ana Maria Oliveira Battastini
    • 2
  • José Cláudio Fonseca Moreira
    • 1
  1. 1.Centro de Estudos em Estresse Oxidativo, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrasil
  2. 2.Laboratório de Enzimologia, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrasil
  3. 3.Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas (UFPel)PelotasBrasil
  4. 4.Departamento de Bioquímica (ICBS-UFRGS)Porto AlegreBrasil

Personalised recommendations