Investigational New Drugs

, Volume 30, Issue 6, pp 2087–2095 | Cite as

(+)-Episesamin exerts anti-neoplastic effects in human hepatocellular carcinoma cell lines via suppression of nuclear factor-kappa B and inhibition of MMP-9

  • Christian Freise
  • Wolfram Trowitzsch-Kienast
  • Martin Ruehl
  • Ulrike Erben
  • Daniel Seehofer
  • Ki Young Kim
  • Martin Zeitz
  • Rajan Somasundaram


Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Treatment options, especially in advanced tumor stages, are still limited. Inhibition of signaling cascades involved in the pathogenesis of HCC - such as NF-ĸB - offer a promising therapeutic approach. Aim of this study was to examine anti-neoplastic effects of (+)-episesamin which has been isolated from an anti-fibrotic extract of Lindera obtusiloba on human HCC cells with particular interest in activation of NF-κB. The human HCC cell lines HepG2, Huh-7 and SK-Hep1 were treated with (+)-episesamin. Beside measurement of proliferation, invasion and apoptosis, effects of (+)-episesamin on NF-κB-activity, VEGF secretion and enzymatic MMP-9 activity were determined. Anti-inflammatory effects were assessed by IL-6 ELISA using HCC cells and RAW264.7 macrophages. 10 μM (+)-episesamin reduced the proliferation of HCC cells by ~50%, suppressed invasion and induced apoptosis. DNA-binding ELISA experiments revealed that (+)-episesamin treated HCC cells showed a suppressed basal and TNFα-induced activation of NF-κB and a subsequent suppression of TNFα- and LPS-induced IL-6 production. Further, (+)-episesamin exhibited inhibitory effects on the enzymatic activity of recombinant MMP-9 and the secretion of MMP-9 and VEGF by HCC cells into their supernatants. Our findings show that anti-neoplastic effects of (+)-episesamin are mediated via suppressed activation of NF-κB which entails a decreased release of pro-inflammatory IL-6. In addition, (+)-episesamin inhibits MMP-9, which is strongly expressed in invasive HCC, and the production of proangiogenic VEGF. We conclude that (+)-episesamin has the potential to be further explored as a complementary treatment for HCC.


(+)-episesamin HCC NF-kappaB MMP-9 Lindera obtusiloba 



This work was supported by the Collaborative Research Centers (SFB366 C5/C10) and (SFB633 Z1) from the Deutsche Forschungsgemeinschaft and the Berliner Sparkassenstiftung Medizin.

Declaration of interest

The authors declare that they have no conflict of interest.


  1. 1.
    El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576PubMedCrossRefGoogle Scholar
  2. 2.
    Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM (2007) Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27(1):55–76PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34PubMedCrossRefGoogle Scholar
  4. 4.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390PubMedCrossRefGoogle Scholar
  5. 5.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedCrossRefGoogle Scholar
  6. 6.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67PubMedCrossRefGoogle Scholar
  7. 7.
    Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M, Fukumoto M, Imamura M (1996) Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 24(2):316–322PubMedCrossRefGoogle Scholar
  8. 8.
    Sato H, Kita M, Seiki M (1993) v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem 268(31):23460–23468PubMedGoogle Scholar
  9. 9.
    Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183PubMedCrossRefGoogle Scholar
  10. 10.
    Freise C, Erben U, Neuman U, Kim K, Zeitz M, Somasundaram R, Ruehl M (2010) An active extract of Lindera obtusiloba inhibits adipogenesis via sustained Wnt signaling and exerts anti-inflammatory effects in the 3 T3-L1 preadipocytes. J Nutr Biochem 21(12):1170–1177PubMedCrossRefGoogle Scholar
  11. 11.
    Ruehl M, Erben U, Kim K, Freise C, Dagdelen T, Eisele S, Trowitzsch-Kienast W, Zeitz M, Jia J, Stickel F, Somasundaram R (2009) Extracts of Lindera obtusiloba induce antifibrotic effects in hepatic stellate cells via suppression of a TGF-beta-mediated profibrotic gene expression pattern. J Nutr Biochem 20(8):597–606PubMedCrossRefGoogle Scholar
  12. 12.
    Freise C, Ruehl M, Erben U, Neumann U, Seehofer D, Kim KY, Trowitzsch-Kienast W, Stroh T, Zeitz M, Somasundaram R (2011) A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines. BMC Complement Altern Med 11:39PubMedCrossRefGoogle Scholar
  13. 13.
    Trowitzsch-Kienast W, Ruehl M, Kim KY, Emmerling F, Erben U, Somasundaram R, Freise C (2011) Absolute configuration of antifibrotic (+)-episesamin isolated from Lindera obtusiloba BLUME. Z Naturforsch C 66c, #–# (in press)Google Scholar
  14. 14.
    Umeda-Sawada R, Ogawa M, Igarashi O (1998) The metabolism and n-6/n-3 ratio of essential fatty acids in rats: effect of dietary arachidonic acid and a mixture of sesame lignans (sesamin and episesamin). Lipids 33(6):567–572PubMedCrossRefGoogle Scholar
  15. 15.
    Ogawa H, Sasagawa S, Murakami T, Yoshizumi H (1995) Sesame lignans modulate cholesterol metabolism in the stroke-prone spontaneously hypertensive rat. Clin Exp Pharmacol Physiol Suppl 22(1):S310–312PubMedCrossRefGoogle Scholar
  16. 16.
    Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, Tanabe KK (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399PubMedCrossRefGoogle Scholar
  17. 17.
    Freise C, Erben U, Muche M, Farndale R, Zeitz M, Somasundaram R, Ruehl M (2009) The alpha 2 chain of collagen type VI sequesters latent proforms of matrix-metalloproteinases and modulates their activation and activity. Matrix Biol 28(8):480–489, Epub 2009 Aug 2019PubMedCrossRefGoogle Scholar
  18. 18.
    Hah N, Lee ST (2003) An absolute role of the PKC-dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochem Biophys Res Commun 305(2):428–433PubMedCrossRefGoogle Scholar
  19. 19.
    Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12(5–6):311–320PubMedCrossRefGoogle Scholar
  20. 20.
    Okun I, Balakin KV, Tkachenko SE, Ivachtchenko AV (2008) Caspase activity modulators as anticancer agents. Anticancer Agents Med Chem 8(3):322–341PubMedCrossRefGoogle Scholar
  21. 21.
    Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, Agarwal S (2006) Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem J 396(2):235–242PubMedCrossRefGoogle Scholar
  22. 22.
    Dalwadi H, Krysan K, Heuze-Vourc'h N, Dohadwala M, Elashoff D, Sharma S, Cacalano N, Lichtenstein A, Dubinett S (2005) Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin Cancer Res 11(21):7674–7682PubMedCrossRefGoogle Scholar
  23. 23.
    Calvisi DF, Pinna F, Ladu S, Pellegrino R, Muroni MR, Simile MM, Frau M, Tomasi ML, De Miglio MR, Seddaiu MA, Daino L, Sanna V, Feo F, Pascale RM (2008) Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis 29(8):1639–1647PubMedCrossRefGoogle Scholar
  24. 24.
    Salminen A, Kaarniranta K (2009) Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal 22(4):573–577PubMedCrossRefGoogle Scholar
  25. 25.
    Sun B, Karin M (2008) NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene 27(48):6228–6244PubMedCrossRefGoogle Scholar
  26. 26.
    Liu TZ, Hu CC, Chen YH, Stern A, Cheng JT (2000) Differentiation status modulates transcription factor NF-kappaB activity in unstimulated human hepatocellular carcinoma cell lines. Cancer Lett 151(1):49–56PubMedCrossRefGoogle Scholar
  27. 27.
    Wu JM, Sheng H, Saxena R, Skill NJ, Bhat-Nakshatri P, Yu M, Nakshatri H, Maluccio MA (2009) NF-kappaB inhibition in human hepatocellular carcinoma and its potential as adjunct to sorafenib based therapy. Cancer Lett 278(2):145–155PubMedCrossRefGoogle Scholar
  28. 28.
    Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. Febs J 278(1):16–27PubMedCrossRefGoogle Scholar
  29. 29.
    Shimada C, Ninomiya Y, Suzuki E, Umezawa K (2010) Efficient cellular uptake of the novel NF-kappaB inhibitor (−)-DHMEQ and irreversible inhibition of NF-kappaB in neoplastic cells. Oncol 18(11–12):529–535.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Freise
    • 1
  • Wolfram Trowitzsch-Kienast
    • 2
  • Martin Ruehl
    • 1
  • Ulrike Erben
    • 1
  • Daniel Seehofer
    • 3
  • Ki Young Kim
    • 4
  • Martin Zeitz
    • 1
  • Rajan Somasundaram
    • 1
  1. 1.Department of Gastroenterology, Infectiology and RheumatologyCharité - Campus Benjamin FranklinBerlinGermany
  2. 2.Department of Chemical and Pharmaceutical EngineeringBeuth Hochschule für Technik BerlinBerlinGermany
  3. 3.Department of General, Visceral and Transplantation Surgery, Campus Virchow KlinikumCharité - Universitätsmedizin BerlinBerlinGermany
  4. 4.Faculty of Beauty Design, Human Environmental Science CollegeWonkwang UniversityIksan CitySouth Korea

Personalised recommendations