Skip to main content

Advertisement

Log in

ZJU-6, a novel derivative of Erianin, shows potent anti-tubulin polymerisation and anti-angiogenic activities

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

ZJU-6 was designed to enhance anti-angiogenesis and anti-tumour activity of its parent compound Erianin, a clinic anti-tumour agent. This study investigated the detailed biological mechanism of ZJU-6 in comparison with that of Erianin. Both ZJU-6 and Erianin substantially reduced cell viability and induced apoptosis in human cancer cell lines. Profound G2/M cell arrest was observed 24 h after treatment of MCF-7 cells with ZJU-6 (≥ 2.5 μM) or Erianin (≥ 0.1 μM); being consistent with mitotic collapse. 0.5 μM of Erianin or ZJU-6 failed to stabilise tubulin. Pre-G1 MCF-7 cell accumulating 24 h post treatment indicated apoptosis. Caspase-3 activity, PARP cleavage and Annexin V + ve /PI -ve populations correlate the apoptotic destiny of cells exposed to either ZJU-6 or Erianin. Furthermore ZJU-6 showed potent anti-angiogenetic property and demonstrated radical scavenging capacity. Due to its potent anti-proliferative, pro-apoptotic and anti-angiogenic activities ZJU-6 is an attractive chemotherapeutic agent to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  PubMed  CAS  Google Scholar 

  2. Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22(8):1111–1117

    Article  PubMed  CAS  Google Scholar 

  3. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  PubMed  CAS  Google Scholar 

  4. Gong YQ, Fan Y, Wu DZ, Yang H, Hu ZB, Wang ZT (2004) In vivo and in vitro evaluation of erianin, a novel anti-angiogenic agent. Eur J Cancer 40(10):1554–1565. doi:10.1016/j.ejca.2004.01.041S095980490400231X[pii]

    Article  PubMed  CAS  Google Scholar 

  5. Gong Y, Fan Y, Liu L, Wu D, Chang Z, Wang Z (2004) Erianin induces a JNK/SAPK-dependent metabolic inhibition in human umbilical vein endothelial cells. In Vivo 18(2):223–228

    PubMed  CAS  Google Scholar 

  6. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 59(7):1626–1634

    PubMed  CAS  Google Scholar 

  7. Ng TB, Liu F, Wang ZT (2000) Antioxidative activity of natural products from plants. Life Sci 66(8):709–723

    Article  PubMed  CAS  Google Scholar 

  8. Polytarchou C, Papadimitriou E (2005) Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity. Eur J Pharmacol 510(1–2):31–38

    Article  PubMed  CAS  Google Scholar 

  9. Cho M, Hunt TK, Hussain MZ (2001) Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280(5):H2357–2363

    PubMed  CAS  Google Scholar 

  10. Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis AP (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98(7):1667–1675

    Article  PubMed  CAS  Google Scholar 

  11. Hahn SM, DeLuca AM, Coffin D, Krishna CM, Mitchell JB (1998) In vivo radioprotection and effects on blood pressure of the stable free radical nitroxides. Int J Radiat Oncol Biol Phys 42(4):839–842

    Article  PubMed  CAS  Google Scholar 

  12. Wang S, Meades C, Wood G, Osnowski A, Anderson S, Yuill R, Thomas M, Mezna M, Jackson W, Midgley C, Griffiths G, Fleming I, Green S, McNae I, Wu SY, McInnes C, Zheleva D, Walkinshaw MD, Fischer PM (2004) 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: synthesis, SAR analysis, X-ray crystallography, and biological activity. J Med Chem 47(7):1662–1675. doi:10.1021/jm0309957

    Article  PubMed  CAS  Google Scholar 

  13. Liu X, Lam F, Shi S, Fischer PM, Wang S. In vitro antitumor mechanism of a novel cyclin-dependent kinase inhibitor CDKI-83. Invest New Drugs. doi:10.1007/s10637-011-9641-5

  14. Liu X, Shi S, Lam F, Pepper C, Fischer PM, Wang S (2011) CDKI-71, a novel CDK9 inhibitor, is preferentially cytotoxic to cancer cells when compared with flavopiridol. Int J Cancer. doi:10.1002/ijc.26127

  15. Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16(8):1754–1764

    Article  PubMed  CAS  Google Scholar 

  16. Chen R, Keating MJ, Gandhi V, Plunkett W (2005) Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106(7):2513–2519

    Article  PubMed  CAS  Google Scholar 

  17. Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41(2):391–394

    Article  PubMed  CAS  Google Scholar 

  18. Li YM, Wang HY, Liu GQ (2001) Erianin induces apoptosis in human leukemia HL-60 cells. Acta Pharmacol Sin 22(11):1018–1022

    PubMed  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  20. Hahn SM, Mitchell JB, Shacter E (1997) Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage. Free Radic Biol Med 23(6):879–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by The Royal Society, UK (grant RC2617) and NSFC, China

Conflicts of interest

No potential conflicts of interest are disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, F., Bradshaw, T.D., Mao, H. et al. ZJU-6, a novel derivative of Erianin, shows potent anti-tubulin polymerisation and anti-angiogenic activities. Invest New Drugs 30, 1899–1907 (2012). https://doi.org/10.1007/s10637-011-9755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9755-9

Keywords

Navigation