Investigational New Drugs

, Volume 30, Issue 4, pp 1802–1811 | Cite as

Developmental antiangiogenic agents for the treatment of Non-Small Cell Lung Cancer (NSCLC)

  • George R. BlumenscheinJr


Standard therapy for advanced or metastatic non-small cell lung cancer (NSCLC) has primarily consisted of traditional cytotoxic chemotherapy, although use of targeted therapies has been approved in specific settings. Antiangiogenic agents represent a promising therapeutic strategy for treatment of advanced NSCLC. Bevacizumab is currently approved when given in combination with first-line platinum-based therapy in selected patients with nonsquamous NSCLC. Bevacizumab may also provide benefit in other clinical settings, as a part of a combination or maintenance strategy. Other antiangiogenic agents under development, including multi-targeted kinase inhibitors (MTKIs) and antibody-based agents, have exhibited mixed results in the NSCLC population. Published efficacy and safety data from clinical trials for antiangiogenic agents are reviewed, with an emphasis on novel agents and novel settings for established agents. Identification of biomarkers associated with improved efficacy may help select patients likely to receive the most benefit from these agents and may improve outcomes through development of personalized therapeutic strategies.


Angiogenesis inhibitor Biological marker Carcinoma, non-small cell lung Protein-tyrosine kinase Receptor, vascular endothelial growth factor 



This work was supported by Boehringer Ingelheim Pharmaceuticals, Inc (BIPI). Writing and editorial assistance was provided by Staci Heise, PhD, of MedErgy, which was contracted by BIPI for these services. The author meets criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE), was fully responsible for all content and editorial decisions, and was involved at all stages of manuscript development. The author received no compensation related to the development of the manuscript.

Conflicts of Interest

The author declares that he has no conflicts of interest to disclose.


  1. 1.
    American Cancer Society (2009) Cancer facts & figures, 2009. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    World Health Organization (2008) Fact sheet No. 310: the top ten causes of death. November 2008. Accessed 8 October 2009
  3. 3.
    National Comprehensive Cancer Network (2011) NCCN clinical practice guidelines in oncology™. Non-Small Cell Lung Cancer. V.3.2011. Accessed 21 May 11 A.D.
  4. 4.
    Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98CrossRefPubMedGoogle Scholar
  5. 5.
    Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U, Digumarti R, Zukin M, Lee JS, Mellemgaard A, Park K, Patil S, Rolski J, Goksel T, de Marinis F, Simms L, Sugarman KP, Gandara D (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551CrossRefPubMedGoogle Scholar
  6. 6.
    AVASTIN® (bevacizumab) (2011) Solution for intravenous infusion [package insert]. South San Francisco, CA: Genentech, IncGoogle Scholar
  7. 7.
    Iressa® (gefitinib tablets) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LPGoogle Scholar
  8. 8.
    Tarceva® (erlotinib tablets) [package insert]. South San Franscisco, CA: Genentech, IncGoogle Scholar
  9. 9.
    Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175CrossRefPubMedGoogle Scholar
  10. 10.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936CrossRefPubMedGoogle Scholar
  11. 11.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMedGoogle Scholar
  13. 13.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257CrossRefPubMedGoogle Scholar
  14. 14.
    Folkman J, Klagsbrun M (1987) Vascular physiology. A family of angiogenic peptides. Nature 329:671–672CrossRefPubMedGoogle Scholar
  15. 15.
    Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934PubMedGoogle Scholar
  16. 16.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–27CrossRefPubMedGoogle Scholar
  17. 17.
    Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591CrossRefPubMedGoogle Scholar
  18. 18.
    Korpanty G, Smyth E, Sullivan LA, Brekken RA, Carney DN (2010) Antiangiogenic therapy in lung cancer: focus on vascular endothelial growth factor pathway. Exp Biol Med (Maywood) 235:3–9CrossRefGoogle Scholar
  19. 19.
    Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112:1134–1136PubMedGoogle Scholar
  20. 20.
    Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25CrossRefPubMedGoogle Scholar
  21. 21.
    Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673CrossRefPubMedGoogle Scholar
  22. 22.
    Yuan A, Yu C-J, Kuo S-H, Chen W-J, Lin F-Y, Luh K-T, Yang P-C, Lee Y-C (2001) Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol 19:432–441PubMedGoogle Scholar
  23. 23.
    Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM (1996) Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 56:1615–1620PubMedGoogle Scholar
  24. 24.
    Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF III, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191CrossRefPubMedGoogle Scholar
  25. 25.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550CrossRefPubMedGoogle Scholar
  26. 26.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol 27:1227–1234CrossRefPubMedGoogle Scholar
  27. 27.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809CrossRefPubMedGoogle Scholar
  28. 28.
    Crino L, Dansin E, Garrido P, Griesinger F, Laskin J, Pavlakis N, Stroiakovski D, Thatcher N, Tsai CM, Wu YL, Zhou C (2010) Safety and efficacy of first-line bevacizumab-based therapy in advanced non-squamous non-small-cell lung cancer (SAiL, MO19390): a phase 4 study. Lancet Oncol 11:733–740CrossRefPubMedGoogle Scholar
  29. 29.
    Wozniak AJ, Garst J, Jahanzeb M, Kosty MP, Vidaver R, Beatty S, Teng S, Flick ED, Sing A, Lynch TJ, for the ARIES Investigators (2010) Clinical outcomes (CO) for special populations of patients (pts) with advanced non-small cell lung cancer (NSCLC): results from ARIES, a bevacizumab (BV) observational cohort study (OCS). J Clin Oncol 28: Abstract 7618Google Scholar
  30. 30.
    Dowlati A, Gray R, Sandler AB, Schiller JH, Johnson DH (2008) Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab-an Eastern Cooperative Oncology Group Study. Clin Cancer Res 14:1407–1412CrossRefPubMedGoogle Scholar
  31. 31.
    Socinski MA, Langer CJ, Huang JE, Kolb MM, Compton P, Wang L, Akerley W (2009) Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J Clin Oncol 27:5255–5261CrossRefPubMedGoogle Scholar
  32. 32.
    Herbst RS, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, Vlahovic G, Soh CH, O’Connor P, Hainsworth J (2011) Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet 377:1846–1854CrossRefPubMedGoogle Scholar
  33. 33.
    Kabbinavar FF, Miller VA, Johnson BE, O’Connor PG, Soh C, TLAS I (2010) Overall survival (OS) in ATLAS, a phase IIIb trial comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy (chemo) with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 28: Abstract 7526Google Scholar
  34. 34.
    Patel JD, Bonomi P, Socinski MA, Govindan R, Hong S, Obasaju C, Pennella EJ, Girvan AC, Guba SC (2009) Treatment rationale and study design for the pointbreak study: a randomized, open-label phase III study of pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab versus paclitaxel/carboplatin/bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. Clin Lung Cancer 10:252–256CrossRefPubMedGoogle Scholar
  35. 35.
    Wakelee HA, Dahlberg SE, Keller SM, Gandara DR, Graziano S, Leighl NB, Adjei AA, Schiller J (2011) Interim report of on-study demographics and toxicity from Eastern Cooperative Oncology Group (ECOG) E1505, a phase III randomized trial of adjuvant chemotherapy with or without bevacizumab for completely resected early stage non-small cell lung cancer. J Thorac Oncol 6: Abstract O42.03Google Scholar
  36. 36.
    Levitzki A (2004) PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev 15:229–235CrossRefPubMedGoogle Scholar
  37. 37.
    Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong GH, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28:658–664CrossRefPubMedGoogle Scholar
  38. 38.
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMedGoogle Scholar
  39. 39.
    Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340PubMedGoogle Scholar
  40. 40.
    Cabebe E, Wakelee H (2007) Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr Treat Options Oncol 8:15–27CrossRefPubMedGoogle Scholar
  41. 41.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309CrossRefPubMedGoogle Scholar
  42. 42.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109CrossRefPubMedGoogle Scholar
  43. 43.
    Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, brao Miziara JE, Balint B, de Marinis F, Keller A, Aren O, Csollak M, Albert I, Barrios CH, Grossi F, Krzakowski M, Cupit L, Cihon F, DiMatteo S, Hanna N (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842CrossRefPubMedGoogle Scholar
  44. 44.
    Gatzemeier U, Eisen T, Santoro A, Paz-Ares L, Bennouna J, Liao M, Strauss UP, Montegriffo E, Ong TJ, Biesma B (2010) Sorafenib (S) + gemcitabine/cisplatin (GC) vs GC alone in the first-line treatment of advanced non-small cell lung cancer (NSCLC): Phase III NSCLC research experience utilizing sorafenib (NEXUS) trial. Ann Oncol 21:viii7.Google Scholar
  45. 45.
    Schiller JH, Lee JW, Hanna NH, Traynor AM, Carbone DP (2008) A randomized discontinuation phase II study of sorafenib versus placebo in patients with non-small cell lung cancer who have failed at least two prior chemotherapy regimens: E2501. J Clin Oncol 26: Abstract 8014Google Scholar
  46. 46.
    Molina JR, Dy GK, Foster NR, Allen Ziegler KL, Adjei A, Rowland KM, Aubry M, Flynn PJ, Mandrekar SJ, Schild SE, Adjei AA (2011) A randomized phase II study of pemetrexed (PEM) with or without sorafenib (S) as second-line therapy in advanced non-small cell lung cancer (NSCLC) of nonsquamous histology: NCCTG N0626 study. J Clin Oncol 29: Abstract 7513Google Scholar
  47. 47.
    Spigel DR, Burris HA III, Greco FA, Shipley DL, Friedman EK, Waterhouse DM, Whorf RC, Mitchell RB, Daniel DB, Zangmeister J, Bass JD, Hainsworth JD (2011) Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer. J Clin Oncol 29:2582–2589CrossRefPubMedGoogle Scholar
  48. 48.
    Vroling L, Lind JS, de Haas RR, Verheul HM, van Hinsbergh V, Broxterman HJ, Smit EF (2010) CD133+ circulating haematopoietic progenitor cells predict for response to sorafenib plus erlotinib in non-small cell lung cancer patients. Br J Cancer 102:268–275CrossRefPubMedGoogle Scholar
  49. 49.
    Kim ES, Herbst RS, Lee JJ, Blumenschein GR, Jr., Tsao A, Alden CM, Tang X, Liu S, Stewart DJ, Heymach JV, Tran HT, Hicks ME, Erasmus J, Jr., Gupta S, Powis G, Lippman SM, Wistuba II, Hong WK (2010) The BATTLE trial (Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination): personalizing therapy for lung cancer. Presented at: the 101st Annual Meeting of the American Association for Cancer Research; April 17–21, 2010; Washington, DCGoogle Scholar
  50. 50.
    Herbst RS, Blumenschein GR, Jr., Kim ES, Lee J, Tsao AS, Alden CM, Liu S, Stewart DJ, Wistuba II, Hong WK (2010) Sorafenib treatment efficacy and KRAS biomarker status in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trial. J Clin Oncol (Meeting Abstracts) 28:7609.Google Scholar
  51. 51.
    Socinski MA, Novello S, Brahmer JR, Rosell R, Sanchez JM, Belani CP, Govindan R, Atkins JN, Gillenwater HH, Pallares C, Tye L, Selaru P, Chao RC, Scagliotti GV (2008) Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer. J Clin Oncol 26:650–656CrossRefGoogle Scholar
  52. 52.
    Novello S, Scagliotti GV, Rosell R, Socinski MA, Brahmer J, Atkins J, Pallares C, Burgess R, Tye L, Selaru P, Wang E, Chao R, Govindan R (2009) Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer. Br J Cancer 101:1543–1548CrossRefPubMedGoogle Scholar
  53. 53.
    Reynolds C, Spira AI, Gluck WL, Pluenneke RE, Boehm KA, Zhan F, Asmar L (2011) Results of a phase II study of single-agent sunitinib in elderly non-small cell lung cancer patients. J Clin Oncol 29: Abstract 7549Google Scholar
  54. 54.
    Scagliotti GV, Krzakowski M, Szczesna A, Strausz J, Makhson A, Reck M, Tye L, Selaru P, Chao RC, Govindan R (2010) Sunitinib (SU) in combination with erlotinib (E) for the treatment of advanced/metastatic non-small cell lung cancer (NSCLC): a phase III study. Ann Oncol 21:viii3. Abstract LBA6Google Scholar
  55. 55.
    Thongprasert S, Tung Y, Kim J-H, Chang G-C, Park K, Su W-C, Kim S-W, Mok TSK, Sriuranpong V, Thall A, Tye L, Zhang K, Chao RC, Scagliotti GV, Govindan R (2011) Sunitinib plus erlotinib for the treatment of advanced NSCLC: subset analysis of East Asian patients participating in a phase III trial. J Thorac Oncol 6: Abstract MO09.02Google Scholar
  56. 56.
    Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R, Hilberg F (2009) Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J Med Chem 52:4466–4480CrossRefPubMedGoogle Scholar
  57. 57.
    Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, Garin-Chesa P, Bader G, Zoephel A, Quant J, Heckel A, Rettig WJ (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774–4782CrossRefPubMedGoogle Scholar
  58. 58.
    Reck M, Kaiser R, Eschbach C, Stefanic M, Love J, Gatzemeier U, Stopfer P, von Pawel J (2011) A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol 22:1374–1381CrossRefPubMedGoogle Scholar
  59. 59.
    Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, Smith NR, James NH, Dukes M, Curwen JO, Chester R, Jackson JA, Boffey SJ, Kilburn LL, Barnett S, Richmond GH, Wadsworth PF, Walker M, Bigley AL, Taylor ST, Cooper L, Beck S, Jurgensmeier JM, Ogilvie DJ (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65:4389–4400CrossRefPubMedGoogle Scholar
  60. 60.
    Goss GD, Arnold A, Shepherd FA, Dediu M, Ciuleanu TE, Fenton D, Zukin M, Walde D, Laberge F, Vincent MD, Ellis PM, Laurie SA, Ding K, Frymire E, Gauthier I, Leighl NB, Ho C, Noble J, Lee CW, Seymour L (2010) Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC Clinical Trials Group BR24 study. J Clin Oncol 28:49–55CrossRefPubMedGoogle Scholar
  61. 61.
    NCIC Clinical Trials Group (2011) Site committee open/closed/planned/on hold/withdrawn studies. Accessed 11 August 2011
  62. 62.
    Gadgeel SM, Ruckdeschel JC, Wozniak AJ, Chen W, Hackstock D, Galasso C, Burger A, Ivy SP, LoRusso P, Edelman MJ (2011) Cediranib, a VEGF receptor 1, 2, and 3 inhibitor, and pemetrexed in patients (pts) with recurrent non-small cell lung cancer (NSCLC). J Clin Oncol 29: Abstract 7564Google Scholar
  63. 63.
    Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L, Bready J, Estrada J, Cattley R, Kaufman S, Chen D, Gan Y, Kumar G, Meyer J, Neervannan S, Alva G, Talvenheimo J, Montestruque S, Tasker A, Patel V, Radinsky R, Kendall R (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 66:8715–8721CrossRefPubMedGoogle Scholar
  64. 64.
    Blumenschein GR Jr, Kabbinavar F, Menon H, Mok TS, Stephenson J, Beck JT, Lakshmaiah K, Reckamp K, Hei YJ, Kracht K, Sun YN, Sikorski R, Schwartzberg L (2011) A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann Oncol. doi: 10.1093
  65. 65.
    Amgen (2009) Independent data monitoring committee recommends resuming enrollment of non-squamous NSCLC patients in the motesanib MONET1 trial. Accessed 12 May 2010
  66. 66.
    Amgen Inc, Millenium Pharmaceuticals, Takeda Pharmaceutical Company Limited (2011) Top-line results announced of pivotal phase 3 motesanib trial in advanced non-squamous non-small cell lung cancer patients. Accessed 18 April 2011
  67. 67.
    Scagliotti G, Vynnychenko I, Ichinose Y, Park K, Kubota K, Blackhall FH, Pirker R, Galiulin R, Ciuleanu T, Sydorenko O, Dediu M, Papai-Szekely Z, Martinez Banaclocha N, McCoy S, Yao B, Hei Y, Spigel DR (2011) An international, randomized, placebo-controlled, double-blind phase III study (MONET1) of motesanib plus carboplatin/paclitaxel (C/P) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol 29: Abstract LBA7512Google Scholar
  68. 68.
    Choueiri TK (2008) Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr Opin Investig Drugs 9:658–671PubMedGoogle Scholar
  69. 69.
    Schiller JH, Larson T, Ou SH, Limentani S, Sandler A, Vokes E, Kim S, Liau K, Bycott P, Olszanski AJ, von Pawel J (2009) Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study. J Clin Oncol 27:3836–3841CrossRefPubMedGoogle Scholar
  70. 70.
    Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, Hopper TM, Miller CG, Harrington LE, Onori JA, Mullin RJ, Gilmer TM, Truesdale AT, Epperly AH, Boloor A, Stafford JA, Luttrell DK, Cheung M (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021CrossRefPubMedGoogle Scholar
  71. 71.
    Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 103:19478–19483CrossRefPubMedGoogle Scholar
  72. 72.
    Altorki N, Lane ME, Bauer T, Lee PC, Guarino MJ, Pass H, Felip E, Peylan-Ramu N, Gurpide A, Grannis FW, Mitchell JD, Tachdjian S, Swann RS, Huff A, Roychowdhury DF, Reeves A, Ottesen LH, Yankelevitz DF (2010) Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J Clin Oncol 28:3131–3137CrossRefPubMedGoogle Scholar
  73. 73.
    Nikolinakos PG, Altorki N, Yankelevitz D, Tran HT, Yan S, Rajagopalan D, Bordogna W, Ottesen LH, Heymach JV (2010) Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res 70:2171–2179CrossRefPubMedGoogle Scholar
  74. 74.
    Lockhart AC, Rothenberg ML, Dupont J, Cooper W, Chevalier P, Sternas L, Buzenet G, Koehler E, Sosman JA, Schwartz LH, Gultekin DH, Koutcher JA, Donnelly EF, Andal R, Dancy I, Spriggs DR, Tew WP (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28:207–214CrossRefPubMedGoogle Scholar
  75. 75.
    Leighl NB, Raez LE, Besse B, Rosen PJ, Barlesi F, Massarelli E, Gabrail N, Hart LL, Albain KS, Berkowitz L, Melnyk O, Shepherd FA, Sternas L, Ackerman J, Shun Z, Miller VA, Herbst RS (2010) A multicenter, phase 2 study of vascular endothelial growth factor trap (Aflibercept) in platinum- and erlotinib-resistant adenocarcinoma of the lung. J Thorac Oncol 5:1054–1059CrossRefPubMedGoogle Scholar
  76. 76.
    (2011) Regeneron Pharmaceuticals, Inc. Sanofi-aventis and Regeneron report top-line results from phase III study with aflibercept (VEGF Trap) in second-line non-small cell lung cancer. Press release. March 10, 2011. Accessed 25 March 2011
  77. 77.
    Novello S, Ramlau R, Gorbunova VA, Ciuleanu TE, Ozguroglu M, Goksel T, Baldotto C, Bennouna J, Shepherd FA, Scagliotti G (2011) Aflibercept in combination with docetaxel for second-line treatment of locally advanced or metastatic non-small-cell lung cancer (NSCLC): Final results of a multinational placebo-controlled phase III trial (EFC10261-VITAL). Abstract associated with oral presentation at: the 14th Biennial World Conference on Lung Cancer; July 3–7, 2011; Amsterdam, Netherlands Abstract O43.06Google Scholar
  78. 78.
    Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, Leong S, O’Bryant C, Chow LQ, Serkova NJ, Meropol NJ, Lewis NL, Chiorean EG, Fox F, Youssoufian H, Rowinsky EK, Eckhardt SG (2010) Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 28:780–787CrossRefPubMedGoogle Scholar
  79. 79.
    Camidge DR, Ballas MS, Dubey S, Haigentz M, Rosen PJ, Spicer JF, West HJ, Shah GD, Youssoufian H, Mita AC (2010) A phase II, open-label study of ramucirumab (IMC-1121B), an IgG1 fully human monoclonal antibody (MAb) targeting VEGFR-2, in combination with paclitaxel and carboplatin as first-line therapy in patients (pts) with stage IIIb/IV non-small cell lung cancer (NSCLC). J Clin Oncol 28: Abstract 7588Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations