Skip to main content

Advertisement

Log in

Description of the cytotoxic effect of a novel drug Abietyl-Isothiocyanate on endometrial cancer cell lines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The objective of the present study was to determine the in-vitro effect of Abietyl-Isothiocyanate (ABITC), a representative of a new class of anti-cancer drugs, on endometrial cancer (EC) cell lines. ABITC at concentrations ≥1 μM displayed dose-dependent and selective cytotoxicity to EC cell lines (ECC-1, AN3CA, RL95-2) in comparison to other cancer cell lines. After treatment with ABITC, ECC-1 unlike control cells displayed hallmark features of apoptosis including chromatin condensation and nuclear fragmentation. At concentrations below the IC50, ABITC exerted anti-proliferative effects by blocking cell-cycle progression through G0/G1 and S-phase. In addition, cells attempted to counteract drug treatment by pro-survival signaling such as deactivation of JNK/SAPK and p38 MAPK and activation of AKT and ErK1/2. ABITC also altered EGF-receptor phosphorylation. At a concentration of 5 μM ABITC generated an excess amount of reactive oxygen species (ROS) and displayed pro-apoptotic signaling such as activation of caspase-8, JNK-SAPK and deactivation of PARP-1. Co-treatment with an antioxidant blocked the drug effects by reducing ROS generation, cytotoxicity and pro-apoptotic signaling. In summary, novel isothiocyanate ABITC is an anti-proliferative and selectively cytotoxic drug to EC cells in-vitro. Key mechanisms during cell death are predominantly correlated to excess generation of ROS. We suggest the further development of ABITC as a potential therapeutic by studying the drug efficacy in EC in-vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EC:

Endometrial cancer

ABITC:

Abietyl-Isothiocyanate

ITC:

Isothiocyanate

ROS:

Reactive oxygen species

MAPK:

Mitogen activated protein kinase

FACS:

Fluorescent activated cell sorting

EGF:

Epidermal growth factor

DAPI:

4′-6-Diamidino-2-Phenylindole

References

  1. American Cancer Society: Cancer Facts and Figures (2010) http://www.cancer.org

  2. Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB (1987) Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study. Cancer 60:2035–2041

    Article  CAS  PubMed  Google Scholar 

  3. Thigpen JT, Brady MF, Homesley HD, Malfetano J, DuBeshter B, Burger RA, Liao S (2004) Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a gynecologic oncology group study. J Clin Oncol 22:3902–3908

    Article  CAS  PubMed  Google Scholar 

  4. Hoskins PJ, Swenerton KD, Pike JA, Wong F, Lim P, Acquino-Parsons C, Lee N (2001) Paclitaxel and carboplatin, alone or with irradiation, in advanced or recurrent endometrial cancer: a phase II study. J Clin Oncol 19:4048–4053

    CAS  PubMed  Google Scholar 

  5. Conaway CC, Yang Y, Lunk FC (2002) Isothiocynates as chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255

    Article  CAS  PubMed  Google Scholar 

  6. Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90

    Article  CAS  PubMed  Google Scholar 

  7. Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R (2004) Sulforaphane-induced G2/M phase cell-cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle. J Biol Chem 279:25813–25822

    Article  CAS  PubMed  Google Scholar 

  8. Jackson SJ, Singletary KW, Venema RC (2007) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vasc Pharmacol 46:77–84

    Article  CAS  Google Scholar 

  9. Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67:2239–2246

    Article  CAS  PubMed  Google Scholar 

  10. Barecki RM, Wang EJ, Johnson WW (2003) Quantitative evaluation of isothiocyanates as substrates and inhibitors of P-glycoprotein. J Pharm Pharmacol 55:1251–1257

    Article  Google Scholar 

  11. Tseng E, Kamath A, Morris ME (2002) Effect of organic isothiocyanates on the P-glycoprotein- and MRP1-mediated transport of daunomycin and vinblastine. Pharm Res 19:1509–1515

    Article  CAS  PubMed  Google Scholar 

  12. Singh RK, Lange TS, Kim K, Zou Y, Lieb C, Sholler GL, Brard L (2007) Effect of indole ethyl isothiocyanates on proliferation, apoptosis and MAPK signaling in neuroblastoma cell lines. Bioorg Med Chem Lett 17:5846–5852

    Article  CAS  PubMed  Google Scholar 

  13. Brard L, Singh RK, Kim KK, Lange TS, Sholler GS (2009) Induction of cytotoxicity, apoptosis and cell-cycle arrest by 1-t-butyl carbamoyl, 7-methyl-indole-3-ethyl isothiocyanate (NB7M) in nervous system cancer cells. Drug Des Dev Ther 2:61–69

    Google Scholar 

  14. Singh RK, Lange TS, Kim KK, Singh AP, Vorsa N, Brard L (2008) Isothiocyanate NB7M causes selective cytotoxicity, pro-apoptotic signaling and cell-cycle regression in ovarian cancer cells. Brit J Cancer 99:1823–1831

    Article  CAS  PubMed  Google Scholar 

  15. Singh RK, Lange TS, Shaw S, Kim KK, Brard L (2008) A novel Indole Ethyl Isothiocyanate (7Me-IEITC) with anti-proliferative and pro-apoptotic effects on platinum-resistant ovarian cancer cells. Gynecol Oncol 109:240–249

    Article  CAS  PubMed  Google Scholar 

  16. Bodo J, Hunakova L, Kvasnicka P, Jakubikova J, Duraj J, Kasparkova J, Sedlak J (2006) Sensitisation for cisplatin-induced apoptosis by isothiocyanate E-4IB leads to signalling pathways alterations. Br J Cancer 95:1348–1353

    Article  CAS  PubMed  Google Scholar 

  17. Lange TS, Kim KK, Singh RK, Strongin RM, McCourt CK, Brard L (2008) Iron(III)-salophene: an metallo-organic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells. PLOS One 3(5):e2303

    Article  PubMed  Google Scholar 

  18. Lange TS, Singh RK, Kim KK, Zou Y, Kalkunte SS, Sholler GL, Swamy N, Brard L (2007) Anti-proliferative and pro-apoptotic properties of 3-bromoacetoxy calcidiol (B3CD) in high-risk Neuroblastoma. Chem Biol Drug Des 70:302–310

    Article  CAS  PubMed  Google Scholar 

  19. Malich G, Markovic B, Winder C (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol 124:179–192

    Article  CAS  Google Scholar 

  20. Albitar L, Pickett G, Morgan M, Wilken JA, Maihle NJ, Leslie KK (2010) EGFR isoforms and gene regulation in human endometrial cancer cells. Mol Cancer 9:166–179

    Article  PubMed  Google Scholar 

  21. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 105:11105–11109

    Article  CAS  PubMed  Google Scholar 

  22. Morse MA, Eklind KI, Hecht SS, Jordan KG, Choi CI, Desai DH, Amin SG, Chung FL (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51:1846–1850

    CAS  PubMed  Google Scholar 

  23. Muftic M (1970) Essay on antibiotic properties of abietyl compounds. Pharm Biol 10:1601–1607

    Article  CAS  Google Scholar 

  24. Lewis MP, Clements M, Takeda S, Kirby PL, Seki H, Lonsdale LB, Sullivan MH, Elder MG, White JO (1996) Partial characterization of an immortalized human trophoblast cell-line, TCL-1, which possesses a CSF-1 autocrine loop. Placenta 17:137–146

    Article  PubMed  Google Scholar 

  25. Hartwell LH, Kastan MB (1994) Cell-cycle control and cancer. Science 266:1821–1828

    Article  CAS  PubMed  Google Scholar 

  26. Gladden AB, Diehl JA (2003) Cell-cycle progression without cyclin E/CDK2: breaking down the walls of dogma. Cancer Cell 4:160–162

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B, Goradia A, Wasik MA, Klein-Szanto AJ, Rustgi AK, Bassing CH, Diehl JA (2007) Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 21:2908–2922

    Article  CAS  PubMed  Google Scholar 

  28. Pines J (1999) Four-dimensional control of the cell-cycle. Nat Cell Biol 1:73–79

    Article  Google Scholar 

  29. Stillman B (1996) Cell-cycle control of DNA replication. Science 274:1659–1664

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro GI, Harper JW (1999) Anticancer drug targets: cell-cycle and checkpoint control. J Clin Invest 104:1645–1653

    Article  CAS  PubMed  Google Scholar 

  31. Mazumder S, DuPree EL, Almasan A (2004) A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets 4:65–75

    Article  CAS  PubMed  Google Scholar 

  32. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  PubMed  Google Scholar 

  33. Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E (1999) A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation. Leukemia 13:1037–1045

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed-Choudhury J, Williams KT, Young LS, Adams DH, Afford SC (2006) SCCD40 mediated human cholangiocyte apoptosis requires JAK2 dependent activation of STAT3 in addition to activation of JNK1/2 and ERK1/2. Cell Signal 18:456–468

    Article  CAS  PubMed  Google Scholar 

  35. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852

    Article  CAS  PubMed  Google Scholar 

  36. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395

    Article  CAS  PubMed  Google Scholar 

  37. Kip A, West S, Sianna C, Dennis PA (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5:234–248

    Article  Google Scholar 

  38. Block M, Fister S, Emons G, Seeber S, Gründker C, Günthert AR (2010) Antiproliferative effects of antiestrogens and inhibitors of growth factor receptor signaling on endometrial cancer cells. Anticancer Res 30:2025–2031

    CAS  PubMed  Google Scholar 

  39. Zhihong Ai Z, Yin L, Zhou X, Zhu Y, Zhu D, Yu Y, Feng Y (2006) Inhibition of surviving reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 107(4):746–7561

    Article  PubMed  Google Scholar 

  40. Ai Z, Wang J, Wang Y, Lu L, Tong J, Teng Y (2010) Overexpressed epidermal growth factor receptor (EGFR)-induced progestin insensitivity in human endometrial carcinoma cells by the EGFR/mitogen-activated protein kinase signaling pathway. Cancer 116:3603–3613

    Article  CAS  PubMed  Google Scholar 

  41. Waris G, Ahsan HJ (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. Carcinogenesis 5:1–8

    Article  Google Scholar 

  42. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46

    Article  CAS  PubMed  Google Scholar 

  43. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219

    Article  CAS  PubMed  Google Scholar 

  44. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  45. Osone S, Hosoi H, Kuwahara Y, Matsumoto Y, Lehara T, Sugimoto T (2004) Fenretinide induces sustained-activation of JNK/p38 MAPK and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int J Cancer 112:219–224

    Article  CAS  PubMed  Google Scholar 

  46. Kang YH, Lee SJ (2008) The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J Cell Physiol 217:23–33

    Article  CAS  PubMed  Google Scholar 

  47. Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaïeb A, D’orgeix AD, Laurent G, Jaffrézou JP (1999) Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 56:867–874

    CAS  PubMed  Google Scholar 

  48. Kim JS, Lee JH, Jeong WW, Choi DH, Cha HJ, do Kim H, Kwon JK, Park SE, Park JH, Cho HR, Lee SH, Park SK, Lee BJ, Min YJ, Park JW (2008) Reactive oxygen species-dependent EndoG release mediates cisplatin-induced caspase-independent apoptosis in human head and neck squamous carcinoma cells. Int J Cancer 122:672–680

    Article  CAS  PubMed  Google Scholar 

  49. Tsai-Turton M, Luong BT, Tan Y, Luderer U (2007) Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci 98:216–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RGM is partially supported by NCI Grant #1 RO1 CA136491-01 and Grants from Swim Across America. The authors thank Dr. R. K. Singh for design of compound Abietyl-Isothiocyanate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo S. Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horan, T.C., Zompa, M.A., Seto, C.T. et al. Description of the cytotoxic effect of a novel drug Abietyl-Isothiocyanate on endometrial cancer cell lines. Invest New Drugs 30, 1460–1470 (2012). https://doi.org/10.1007/s10637-011-9728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9728-z

Keywords

Navigation